摘要
本文提出了一种融合因子分解机和图神经网络的推荐模型。通过递归地传播图中节点邻居的特征交叉并使用交叉特征关系域获取注意力权重。实验结果表明,图结构中节点的特征交叉能够提升推荐性能与可解释性,对后续研究具有借鉴意义。
This paper introduces a recommendation model combining factorization machines and graph neural networks.By recursively propagating cross-features among neighboring nodes and utilizing attention mechanisms,and use cross feature relationship domains to obtain attention weights.Experimental results validate its effectiveness,offering valuable insights for future research.
作者
陈诚
陈珊珊
CHEN Cheng;CHEN Shanshan(Nanjing University of Posts and Telecommunications,Nanjing Jiangsu 210003)
出处
《软件》
2024年第6期46-49,共4页
Software
关键词
推荐系统
图神经网络
因子分解机
知识图谱
注意力机制
recommendation system
graph neural network
factorization machines
knowledge graph
attention mechanism