期刊文献+

基于Transformer模型的学情预警系统

A School Precaution System Based on Transformer Model
下载PDF
导出
摘要 学情预警是学生管理工作的重要组成,是日常教学管理和教学改革的重要参考。目前学情预警主要面临学情评价不全面、预警不及时的问题。本文提出了一种基于Transformer模型的学情预警系统,分为数据存储、预测系统和可视化界面三个部分。数据存储通过ETL工具将相关数据提取至数据仓库;预测系统使用Transformer模型根据学生历史数据和风险指数推测本学期课程成绩;可视化界面将预警结果分层并展示。经实验验证,系统准确性能够满足使用需求,使相关人员更及时更全面了解学生的学习状态,开展相关工作。 Learning situation warning is an important component of student management work and an important reference for daily teaching management and teaching reform.At present,the main problem facing the early warning of academic situation is the incomplete evaluation of academic situation and the untimely warning.This article proposes a learning situation early warning system based on the Transformer model,which is divided into three parts:data storage,prediction system,and visualization interface.Data storage extracts relevant data into a data warehouse through ETL tools;The prediction system uses the Transformer model to predict the course grades of this semester based on student historical data and risk index;The visualization interface layers and displays the warning results.Through experimental verification,the accuracy of the system can meet the usage needs,enabling relevant personnel to timely and comprehensively understand the learning status of students and carry out related work.
作者 杨佳骏 田圻 覃天 YANG Jiajun;TIAN Qi;QIN Tian(School of Intelligent Engineering,Hubei Industrial Polytechnic,Shiyan Hubei 442000)
出处 《软件》 2024年第6期142-144,共3页 Software
关键词 学情预警 TRANSFORMER 成绩预测 教育数据挖掘 school precaution Transformer grade prediction educational data-mining
  • 相关文献

参考文献6

二级参考文献32

  • 1黄建明.贝叶斯网络在学生成绩预测中的应用[J].计算机科学,2012,39(S3):280-282. 被引量:30
  • 2葛道凯,张少刚,魏顺平著.教育数据挖掘:方法与应用[M].北京:教育科学出版社,2012.
  • 3Annika Wolff, Zdenek Zdrahal, Andriy Nikolov, Michal Pantucek. Improving retention: predicting at-risk students by analyzing clicking behavior in a virtual learning environment [EB/OL]. http://oro.open. ac.uk/36936,2015-12-31.
  • 4顾小清,张进良等.学习分析:正在浮现中的数据技术[DB/OL].http://"at-COW.doc88.eom/p-0681404625840.html,2015-11-30.
  • 5Kimberly E. Arnold and Matthew D. Pistilli. Course Signals at Purdue: Using learning Analytics to Increase Student Success[EB/OL].http:// www.itap.purdue.edu/learning/docs/research/Arnold_Pistilli-Purdue_ University_Course_Signals-2012.pdf,2015-12-31.
  • 6马红亮,袁莉等.反省分析技术在教育领域中的应用[DB/OL].http://www.aiweibang.com/yuedu/45947986.html.2015-11-30.
  • 7Jo Davies and Martin Graft. Performance in e-learning online par- ticipation and student grades[J]. British Joumal of Educational Teeh- nology, 2005, 36(4): 657-663.
  • 8金义富,朱庆生.一种离群数据集延伸知识发现框架[J].华南理工大学学报(自然科学版),2008,36(9):31-36. 被引量:2
  • 9胡娟,唐菁华.学业适应不良大学生非智力因素的诊断和治疗初探[J].人类工效学,2011,17(3):46-48. 被引量:3
  • 10魏顺平.学习分析技术:挖掘大数据时代下教育数据的价值[J].现代教育技术,2013,23(2):5-11. 被引量:249

共引文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部