期刊文献+

一种注意力卷积与差值特征结合的遥感变化检测模型

A Remote Sensing Change Detection Model Combining Attentional Convolu-tion with Differencing Features
下载PDF
导出
摘要 为了有效地提取变化目标,保证变化目标提取的准确性与完整性,文章提出了一种结合了注意力卷积与差异强化结构的三分支网络ACSCN。该网络具有一个变化学习主分支与两个双时相特征学习附属分支,使用包含通道注意力模块和空间注意力模块的注意力卷积模块来代替普通卷积与池化,并利用强化差异模块来强化两个分支的变化差异特征。为了进一步证明ACSCN的性能,我们用不同方法做了对比。实验证明,相比其它方法,ACSCN能更好地检测目标变化,在边界完整性,提取准确性上具有明显的优势,注意力卷积模块与强化差异模块的加入对方法的性能做了有效地提升。 For the effective extraction of change targets and to censure the accuracy and complete-ness of the extracted change targets,a threc-branch nctwork called ACSCN that combines atten-tion convolution with differcnce-cnhancing structures is proposed in this paper.The network consists of a change-learning main branch and two double-temporal-featurc-learning auxiliary branches.It uses an ACB that replaces regular convolution and pooling with attention and spatial attention modules.Additionally,it employs SCB to enhance the change difference features of the two branches.To further demonstrate the performance of ACSCN,we compare it with differ-ent methods.The results indicate that ACSCN performs better in target change detection,partic-ularly in boundary integrity and extraction accuracy,with significant advantages over the other methods.Incorporating ACB and SCB effectively enhances the method's performance.
作者 秦军 徐升 钱贞兵 QIN Jun;XU Sheng;QIAN Zhenbing(Anhui Eco-Environment Monitoring Center,Anhui Hefei,230031.China)
出处 《长江信息通信》 2024年第7期47-51,共5页 Changjiang Information & Communications
关键词 变化检测 遥感影像 ACSCN 注意力卷积 增强变化 change detcction remote sensing imagc ACSCN attention conv strengthen change
  • 相关文献

参考文献2

二级参考文献19

  • 1Saito K,Spence R,Going C. Using High Resolution Satellite Images for Post-earthquake Building Damage Assessment:A Study Following the 26 January 2001 Gujarate Earthquake[J].{H}EARTHQUAKE SPECTRA,2004,(1):145-170.
  • 2Kouchi K,Kohiyama M,Muraoka N. Earthquake Damage Detection Using High-resolution Satellite Images[A].Anchorage,Alaska,USA,2004.
  • 3Bruzzone L,Prieto D F. An Adaptive Parcel-based Technique for Unsupervised Change Detection[J].{H}International Journal of Remote Sensing,2000,(4):817-822.
  • 4Singh A. Digital Change Detection Techniques Using Remotely Sensed Data[J].{H}International Journal of Remote Sensing,1989,(6):989-1003.
  • 5Coppin P,Bauer M. Processing of Multitemporal Landsat TM Imagery to Optimize Extraction of Forest Cover Change Features[J].{H}IEEE Transactions on Geoscience and Remote Sensing,1994.918-927.
  • 6Lu D,Mausel P,Brondizio E. Change Detection Techniques[J].{H}International Journal of Remote Sensing,2004,(12):2365-2407.
  • 7Radke R,Andra S,Al-Kofahi O. Image Change Detection Algorithms:a Systematic Survey[J].{H}IEEE Transactions on Image Processing,2005,(3):294-307.
  • 8Dekker R J. High-Resolution Radar Damage Assessment After the Earthquake in Haiti on 12 January 2010[J].IEEE Journal of Topics in Applied Earth Observations and Remote Sensing,2011,(4):960-970.
  • 9Balz T,Liao M S. Building-damage Detection Using Post-seismic High-resolution SAR Satellite Data[J].{H}International Journal of Remote Sensing,2010,(13):3369-3391.
  • 10Jin Y Q,Wang D. Automatic Detection of Terrain Surface Changes After Wenchuan Earthquake,May 2008,from ALOS SAR Images Using EM-MRF Method[J].IEEE Trans on Geoscience and Remote Sensing Letters,2009,(2):344-348.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部