期刊文献+

De-DDPM:可控、可迁移的缺陷图像生成方法

De-DDPM:A Controllable and Transferable Defect Image Generation Method
下载PDF
导出
摘要 基于深度学习的表面缺陷检测技术是工业上的一项重要应用,而缺陷图像数据集质量对缺陷检测性能有重要影响.为解决实际工业生产过程中缺陷样本获取成本高、缺陷数据量少的痛点,提出了一种基于去噪扩散概率模型(Denoising diffusion probabilistic model,DDPM)的缺陷图像生成方法.该方法在训练过程中加强了模型对缺陷部位和无缺陷背景的差异化学习.在生成过程中通过缺陷控制模块对生成缺陷的类别、形态、显著性等特征进行精准控制,通过背景融合模块,能将缺陷在不同的无缺陷背景上进行迁移,大大降低新背景上缺陷样本的获取难度.实验验证了该模型的缺陷控制和缺陷迁移能力,其生成结果能有效扩充训练数据集,提升下游缺陷检测任务的准确率. Surface defect detection technology based on deep learning is an important application in industry and the quality of defect image dataset has a significant impact on defect detection performance.A defect image generation method based on denoising diffusion probabilistic model(DDPM)is designed to address the pain points of high cost of obtaining defect samples and low amount of defect data in actual industrial production processes.This method enhances the model's differential learning of defect locations and defect free backgrounds during the training process.Through the defect control module during the generation process,this method accurately controls the category,morphology,saliency and other features of generated defects.Through the background fusion module,defects can be migrated on different defect free backgrounds,which greatly reducing the difficulty of obtaining defect samples on new backgrounds.The experiment has verified the defect control and defect migration capabilities of the model,and its generated results can effectively expand the training dataset and improve the accuracy of downstream defect detection tasks.
作者 岳忠牧 张喆 吕武 赵瑞祥 马杰 YUE Zhong-Mu;ZHANG Zhe;LV Wu;ZHAO Rui-Xiang;MA Jie(School of Artificial Intelligence and Automation,Huazhong University of Science and Technology,Wuhan 430074;Marine Technology Co.,Ltd.,China State Shipbuilding Corporation Limited(CSSC),Beijing 100070)
出处 《自动化学报》 EI CAS CSCD 北大核心 2024年第8期1539-1549,共11页 Acta Automatica Sinica
基金 国家自然科学基金(U1913602,61991412) 装备预先研究基金(50911020603)资助。
关键词 数据增强 数据集扩充 缺陷图像生成 深度学习 Data augmentation dataset expansion defect image generation deep learning
  • 相关文献

参考文献9

二级参考文献61

共引文献345

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部