期刊文献+

基于可持续性理念的竹编文化家具设计研究

Design of Bamboo Woven Cultural Furniture Based on the Concept of Sustainability
下载PDF
导出
摘要 目的对竹编形态进行研究并设计一款竹编文创家具产品。方法在可持续设计的框架下,通过对竹编家具设计需求进行归纳汇总,运用FAHP方法识别关键设计点。继而使用模糊层次分析法FAHP运算得出亟需解决的视觉需求,应用人工智能算法中深度学习方法,构建竹编纹样数据集,通过迭代收敛后提炼出特殊的纹理设计方案。对结构和环境方面的需求通过建立质量屋HOQ模型,将用户需求转化为设计要求,解决纹样视觉和产品设计间的矛盾,应用工程领域的39项参数与TRIZ的40项发明原理,对矛盾进行创造性解决,优化设计与生产过程。结论该设计方案展示了可持续性材料、定量分析方法和高效生产之间的协同效应,验证了人工智能算法在竹编纹样构建中的可持续,竹材料来源的可持续,生产方式的可持续性等优势。 The work aims to study the shape of bamboo woven product and design a cultural and creative product of bamboo woven furniture.Under the framework of sustainable design,through the summary of bamboo furniture design requirements,FAHP method was used to identify the key design points.Then,FAHP was used to find out the visual re-quirements required to be solved.Deep learning method in artificial intelligence algorithm was applied to build bamboo woven pattern data set,and special texture design scheme was extracted after iterative convergence.Through the estab-lishment of the HOQ model,the user requirements were transformed into design requirements to solve the contradiction between pattern vision and product design.The 39 parameters in the engineering field and the 40 invention principles of TRIZ were applied to creatively solve the contradiction and optimize the design and production process.The design scheme demonstrates the synergistic effect between sustainable materials,quantitative analysis methods and efficient pro-duction,and verifies the advantages of artificial intelligence algorithm in the sustainable construction of bamboo woven patterns,sustainable sources of bamboo materials,and sustainable production methods.
作者 范琨 易欣 FAN Kun;YI Xin(School of Art and Design,Communication University of Shanxi,Shanxi Jinzhong 030619,China;Sichuan Fine Arts Institute,Chongqing 400053,China)
出处 《包装工程》 CAS 北大核心 2024年第16期380-389,共10页 Packaging Engineering
基金 山西省教改项目课题(J20231417)。
关键词 可持续性 文创家具 竹编文化 FAHP 深度学习 sustainability cultural and creative furniture bamboo weaving culture FAHP deep learning
  • 相关文献

参考文献25

二级参考文献359

共引文献212

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部