期刊文献+

Solar Cooling Alternatives for Residential Houses

下载PDF
导出
摘要 The energy consumption rate of non-OECD(non-Organisation for Economic Co-operation and Development)countries rises about 2.3 percent per year as compared to the OECD countries which is 0.6 percent.If developing countries use energy efficient technology and integrate renewable energy systems in the new building their carbon dioxide emission rate reduces by 25 to 44 percent.However,even now,renewable energy integrated buildings are hardly considered while constructing them.This paper focuses on the study of solar cooling system options for residential house of Bahir Dar city,in Ethiopia.To meet the demand of housing in the city,different types of apartments and villa houses are under construction.For the analysis case study was made focusing on two types of residential houses,condominium apartment and Impact Real Estate Villa house.Simulation results of IDA ICE software show that the average operative temperatures and cooling loads for condominium apartment and Real-estate Vila are 31.8℃ and 30.7℃,5.53 kW and 5.73 kW respectively.Most of the residences are not satisfied at this operating temperature.There are different types of solar cooling systems.Solar sorption cooling systems are commonly used which can also be classified into absorption,adsorption and desiccant cooling systems.Solar adsorption cooling systems are easy to manufacture locally as compared to solar absorption cooling systems.They do not have moving parts.Some of the working medium pairs used in adsorption cooling system are:activated carbon/ammonia,silica gel/water,zeolite/water.Adsorption chillier with silica gel/water as a working pair was selected since it can operate at regeneration/desorption temperature as low as 45℃ coming from flat plate collectors.At 75℃ regeneration temperature,the system delivers 9℃ chilled water temperature.From cooling load simulation result direct solar irradiation is the highest source of cooling load for both houses.This gives an opportunity for passive solar cooling technology.
出处 《Journal of Civil Engineering and Architecture》 2024年第7期348-362,共15页 土木工程与建筑(英文版)

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部