期刊文献+

On the Well-Posedness Problem of the Anisotropic Porous Medium Equation with a Variable Diffusion Coefficient

原文传递
导出
摘要 The initial-boundary value problem of an anisotropic porous medium equation■is studied.Compared with the usual porous medium equation,there are two different characteristics in this equation.One lies in its anisotropic property,another one is that there is a nonnegative variable diffusion coefficient a(x,t)additionally.Since a(x,t)may be degenerate on the parabolic boundary∂Ω×(0,T),instead of the boundedness of the gradient|∇u|for the usual porous medium,we can only show that∇u∈L^(∞)(0,T;L^(2)_(loc)(Ω)).Based on this property,the partial boundary value conditions matching up with the anisotropic porous medium equation are discovered and two stability theorems of weak solutions can be proved naturally.
作者 ZHAN Huashui
出处 《Journal of Partial Differential Equations》 CSCD 2024年第2期135-149,共15页 偏微分方程(英文版)
基金 supported by Natural Science Foundation of Fujian Province(No.2022J011242),China。
  • 相关文献

参考文献1

二级参考文献14

  • 1[1]Kalashnikov, A. S., Some problems of the qualitative theory of nonlinear degenerate second order parabolic equations, Russian Math. Surveys, 42:2(1987), 169 222.
  • 2[2]DiBenedetto, E., Degenerate Parabolic Equations, Springer-Verlag, New York, 1993.
  • 3[3]Bouguima, S. M. & Lakmeche, A., Multiple solutions of a nonlinear problem involving the p-Laplacian,Comm. Appl. Nonlinear Anal., 7:3(2000), 83-96.
  • 4[4]Nabana, E., Uniqueness for positive solutions of p-Laplacian problem in an annulus, Ann. Fac. Sci.Toulouse Math., 8:l(1999), 143-154.
  • 5[5]Reichel, W. & Walter, W., Radial solutions of equations and inequalities involving the p-Laplacian, J.Inequal. Appl., 1:1(1997), 47-71.
  • 6[6]Dambrosio, W., Multiple solutions of weakly-coupled systems with p-Laplacian operators, Results Math., 36:1-2(1999), 34-54.
  • 7[7]Ko, Y., C1,α regularity of interfaces for solutions of the parabolic p-Laplacian equation, Comm. Partial Differential Equations, 24:5-6(1999), 915 950.
  • 8[8]Barrett, J. W. & Prigozhin, L., Bean's critical-state model as the p →∞ limit of an evolutionary p-Laplacian equation, Nonlinear Anal., 42:6(2000), 977-993.
  • 9[9]Tricomi, F., Sulle equazioni lineari alle derivate parziali di secondo ordine, di tipo misto, Rend. Reale Accad. Lincei., 14:5(1923), 134-247.
  • 10[10]Keldys, M. V., On certain cases of degeneration of equations of elliptic type on the boundary of a domain, Dokl. Akad. Nauk SSSR, 77(1951), 181-183.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部