期刊文献+

Multi-scale hash encoding based neural geometry representation

原文传递
导出
摘要 Recently, neural implicit function-basedrepresentation has attracted more and more attention,and has been widely used to represent surfacesusing differentiable neural networks. However, surfacereconstruction from point clouds or multi-view imagesusing existing neural geometry representations stillsuffer from slow computation and poor accuracy. Toalleviate these issues, we propose a multi-scale hashencoding-based neural geometry representation whicheffectively and efficiently represents the surface asa signed distance field. Our novel neural networkstructure carefully combines low-frequency Fourierposition encoding with multi-scale hash encoding. Theinitialization of the geometry network and geometryfeatures of the rendering module are accordinglyredesigned. Our experiments demonstrate that theproposed representation is at least 10 times faster forreconstructing point clouds with millions of points.It also significantly improves speed and accuracyof multi-view reconstruction. Our code and modelsare available at https://github.com/Dengzhi-USTC/Neural-Geometry-Reconstruction.
出处 《Computational Visual Media》 SCIE EI CSCD 2024年第3期453-470,共18页 计算可视媒体(英文版)
基金 supported by the National Natural Science Foundation of China(Nos.62122071 and 62272433) the Fundamental Research Funds for the Central Universities(No.WK3470000021) the Alibaba Innovation Research Program(AIR).
  • 相关文献

参考文献1

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部