期刊文献+

一种基于压缩感知框架的射电天文图像复原算法

A radio astronomy image restoration algorithm based on compressed sensing framework
原文传递
导出
摘要 射电天文图像去卷积是射电天文学中的一项关键数据处理技术,其主要目标是去除天空图像中由天文观测仪器引入的效应,从而复原原始的天空图像.射电望远镜阵列采用稀疏干涉阵列,成像原理与光学望远镜有所不同.如果UV空间中的采样点不足够密集,将会导致在图像重建时无法获得足够高分辨率的信息,传统的射电天文图像重建算法未能根本解决UV空间欠采样的问题.本文基于压缩感知理论框架,并结合射电天文图像稀疏性的先验知识,研究了一种新的射电天文图像去卷积算法,该算法将脏图的去卷积过程转化为一个旨在求解全局最小化的凸优化问题,即基于IUWT-CS的射电干涉图像重建算法.为了评估该算法的重建性能,研究使用了射电天文学仿真软件包OSKAR对SKA1-low射电望远镜阵列进行模拟观测,并对观测得到的点源和扩展射电源进行了去卷积处理.实验结果表明,与HOGBOM-CLEAN,MS-CLEAN和IUWT-FISTA方法相比,IUWT-CS方法显著提高了射电图像的重建质量,实现了更加精细的去噪和复原效果. Deconvolution of radio astronomy images is a key data processing technique.Its main goal is to remove the effects introduced by the instrument from the observed sky images to recover the original sky images.However,radio interferometer arrays employ sparse interferometric arrays,whose imaging principles differ from those of optical telescopes.If the sampling points in the UV space are not sufficiently dense,this will lead to insufficient high-resolution information during image reconstruction.Traditional radio astronomy image reconstruction algorithms fail to fundamentally solve the problem of UV space undersampling.This paper adopts the compressed sensing theoretical framework,combines prior knowledge of the sparsity of radio astronomy images,and studies a new radio astronomy image deconvolution algorithm,namely the IUWT-CS-based radio interferometric image reconstruction algorithm.This algorithm transforms the dirty image deconvolution process into a convex optimization problem to find the global minimum.To evaluate the reconstruction performance of this algorithm,we used the OSKAR radio astronomy simulation software package to simulate low SKA1 observations and performed deconvolution processing on the extended radio sources obtained.Experimental results show that,compared with the HOGBOM-CLEAN,MS-CLEAN,and IUWT-FISTA methods,the IUWT-CS method significantly improves the reconstruction quality of radio images and achieves finer denoising and restoration effects.
作者 张讯 郭绍光 朱人杰 李纪云 徐志骏 卢范深 ZHANG Xun;GUO ShaoGuang;ZHU RenJie;Li JiYun;Xu ZhiJun;Lu FanShen(Shanghai Astronomical Observatory,Chinese Academy of Sciences,Shanghai 200030,China;University of Chinese Academy of Sciences,Beijing 100049,China;Key Laboratory of Radio Astronomy and Technology,Chinese Academy of Sciences,Beijing 100101,China)
出处 《中国科学:物理学、力学、天文学》 CSCD 北大核心 2024年第8期84-99,共16页 Scientia Sinica Physica,Mechanica & Astronomica
基金 SKA专项(编号:2020SKA0110300) 国家自然科学基金(编号:11873079,12041301,12103079) 国家重点研发计划(编号:2022YFE0133700) 中国科学院青年创新促进会项目(编号:2021258)资助。
关键词 图像去卷积 压缩感知 稀疏表示 图像重构 image deconvolution compressed sensing sparse representation image reconstruction
  • 相关文献

参考文献2

二级参考文献6

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部