期刊文献+

光学遥感图像的小样本目标检测

Few-shot object detection in optical remote sensing images
原文传递
导出
摘要 对遥感图像进行目标检测,具有广阔的应用前景。针对小样本背景下遥感图像目标检测任务存在特征提取不足、定位困难和分类易混淆的问题,本文提出了一种基于协同注意力模块和对比学习分支的小样本目标检测算法。首先,对训练样本进行数据增强操作,以扩充数据集规模;其次,提出了一种协同注意力模块,包括设计的背景衰减注意力和空间感知注意力,利用遥感图像丰富的背景与目标特征信息,指导网络关注与目标定位相关的重点信息,从而便于RPN网络生成更好的区域建议框,减少遗漏目标的概率,提升模型对小样本类别的定位性能;然后,设计了一种对比学习分支。基于设计的对比损失函数,通过联合训练策略,在训练时从特征学习逐步过渡到分类器学习,提高了分类的准确率;最后,设计出一种基于微调的迁移学习范式的小样本目标检测模型,分为基础训练阶段和微调阶段,在基础训练阶段借助充足的基类样本训练模型学习类无关的参数,在微调阶段使用制作的小样本数据集帮助目标检测模型适应特定类别目标,提升其检测性能。此外,本文以两阶段微调方法TFA(Two-stage Fine-tuning Approach)为基准,通过在遥感数据集NWPU VHR-10和DIOR上验证本文提出算法的有效性,结果显示本文算法在NWPU VHR-10和DIOR数据集上与其他基准算法相比,平均精度均有大幅提升。 Objects in remote sensing images are detected by determining the positions and correct categories of objects.Given that this approach has broad application prospects and plays a vital role in many fields,the purpose of this paper is to study its issues,such as insufficient feature extraction,difficultly in locating objects,and confusing classification,when applied to small samples.The specific contributions of this paper are as follows:(1)A collaborative attention module is proposed,which includes designed background attenuating attention and spatial perception attention.The network focuses on key information related to object positioning on the basis of rich background and object feature information,and an RPN network generates improved regional suggestion boxes,reduces the probability of missing targets,and improves the positioning performance of the model for small-sample categories.(2)A contrastive learning branch is designed.Based on the design of the contrast loss function,feature learning is gradually transferred to classifier learning through a joint training strategy,and classification accuracy is improved.(3)A few-shot object detection model based on the fine-tuning transfer learning paradigm is designed,which is divided into basic training and fine-tuning stages.In the basic training stage,the model is trained to learn class-independent parameters with sufficient base class samples.In the fine-tuning stage,a small sample data set is used to enable the target detection model to adapt to specific objects and improve its detection performance.On the basis of the TFA,this article verifies the effectiveness of the proposed algorithm on the remote sensing data sets NWPU,VHR-10,and DIOR.To demonstrate the superiority of our method to other methods for few-shot object detection,we compared our method with TFA,FR,FSODM,DeFRCN,and MFDC.Results show that the proposed algorithm considerably improved the mean average accuracy on NWPU,VHR-10,and DIOR data sets,demonstrating the superiority of the proposed algorithm over the above algorithms.In summary,our method can achieve exceptional detection results from small remote sensing images,exhibiting effectiveness and superiority over other detection methods.We hope that our method can promote further research into few-shot object detection and contribute to the development of this field.
作者 周莲 何楚 汪鼎文 郭子琪 ZHOU Lian;HE Chu;WANG Dingwen;GUO Ziqi(School of Computer Science,Wuhan University,Wuhan 430072,China;School of Electronic Information,Wuhan University,Wuhan 430072,China)
出处 《遥感学报》 EI CSCD 北大核心 2024年第7期1693-1701,共9页 NATIONAL REMOTE SENSING BULLETIN
基金 教育部基金项目(编号:88091B042238)。
关键词 目标检测 小样本学习 遥感图像 注意力机制 对比学习 object detection few-shot learning remote sensing image attention mechanism contrastive learning
  • 相关文献

参考文献8

二级参考文献41

共引文献248

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部