期刊文献+

太阳短波极紫外双波段成像光谱仪设计

Design for Solar Short Extreme Ultraviolet Dual-Waveband Imaging Spectrometer
原文传递
导出
摘要 基于超环面变线距(TVLS)光栅设计太阳短波极紫外的双波段成像光谱仪,光谱仪系统采用非罗兰圆的光栅工作结构,不需要光谱的扫描或探测器的位移即可同时获得17~21 nm和28~32 nm两个波段的高空间、高光谱分辨和大瞬时狭缝视场的消像散光谱成像。基于蒙特卡罗统计模拟方法对太阳短波极紫外双波段成像光谱仪的最优模型开展光线追迹仿真实验,仿真结果表明其空间分辨率优于1″,光谱分辨率优于0.0055 nm,所设计的成像光谱仪具有良好的光栅像差校正效果,其光谱成像性能接近衍射极限。为我国未来的太阳极紫外光谱成像仪器的发展研制提供重要的理论意义,为我国未来的太阳空间探测任务的型号遴选提供重要的参考价值。 Objective Spectroscopic imaging observations in the extreme ultraviolet(EUV)short-wavelength range(10‒40 nm)provide rich information about eruptive solar activities in the upper solar atmosphere.Meanwhile,they encompass emission spectral lines from multi-charged ions(e.g.,high-charge iron ions,helium ions,and magnesium ions)with electron excitation temperatures ranging from 104‒107 K.Such observations play a crucial role in diagnosing plasma temperature,density,and velocity in the solar corona,making the He II 30.4 nm emission spectral line particularly significant for diagnosing small-scale solar eruptive events and conducting global helium abundance measurements.However,regardless of whether launched in the past or currently in orbit,existing imaging spectrometers worldwide face limitations in performing high-spatial and high-spectral resolution diagnostic observations in the EUV short-wavelength range encompassing the He II line.Therefore,we propose and design a solar EUV imaging spectrometer capable of simultaneously operating in the 17‒21 nm and 28‒32 nm wavebands,which features a large off-axis slit for wide field-ofview(FOV)imaging.The instrument utilizes a non-Roland grating structure and a toroidal varied-line-space(TVLS)grating design,enabling simultaneous acquisition of high-spatial and high-spectral resolution,and large instantaneous slit FOV imaging without the need for spectral scanning or detector displacement.Methods The slit scanning solar EUV imaging spectrometer utilizes a narrow slit to restrict the FOV and employs a combination of slit scanning,concave grating,and a two-dimensional flat field detector to achieve high spatial and spectral resolution imaging over a two-dimensional area.Solar EUV radiation passes through a preceding off-axis telescope primary mirror,forming a real image at the telescope focal plane.A narrow slit positioned at the telescope focal plane captures a portion of the image by the instantaneous FOV(IFOV).The light passing through the slit undergoes TVLS grating dispersion and is ultimately directed to two detectors,corresponding to the two wavebands of interest.The TVLS grating as the core dispersive element is analyzed for aberrations in our study.By considering the TVLS grating’s toroidal base parameters,grating groove density function,and imaging structure parameters along with the instrument’s optical path function,we perform aberration analysis.Based on the desired properties of anti-dispersion and off-axis aberration correction,we derive constraints for optimizing the TVLS grating parameters.Subsequently,we employ system resolution as an optimization constraint to further refine the instrument’s design,obtaining the initial structural parameters of the imaging spectrometer.To achieve optimal system performance,we utilize ZEMAX software for optimization via the initial parameters and aberration optimization functions.Meanwhile,the narrow slit imaging of different spectral lines in the target wavebands by non-sequential ray tracing is simulated to validate the spectral imaging performance of the designed system.Results and Discussions The final optimized optical layout of our solar short EUV dual-waveband imaging spectrometer is shown in Fig.4.It operates in the wavelength range of 17‒21 nm and 28‒32 nm,employing e2v CCD detectors with a pixel size of 16μm.The entire instrument’s optical volume measures 2000 mm×280 mm×115 mm.For different spatial scales of solar eruptive targets,three slit widths of 1″,2″,and 20″are available.By performing stepwise rotation of the primary mirror,high-resolution spectral imaging of a 10′×12′two-dimensional solar disc can be realized.The instrument exhibits excellent imaging performance,with the root mean square(RMS)spot size in both spatial and spectral directions being less than 6μm in the 17‒21 nm and 28‒32 nm bands(Fig.6).The RMS spot size changes smoothly with wavelength and gradually increases with larger off-axis FOV(0‒6′).At the Nyquist spatial frequency(31.25 lp/mm),the modulation transfer function(MTF)values for both meridional and sagittal directions at the four edge wavelengths(17,21,28,32 nm)are all greater than 0.5(Fig.7).The encircled energy within a single pixel for the four edge wavelengths is 90.4%,91.6%,88.8%,and 81.0%respectively(Fig.8),all exceeding 80%.In the non-sequential mode,the slit image lengths for different spectral lines in the two bands are 23.28 mm,which is in close agreement with the theoretical value(23.04 mm),with all exhibiting clear peaks(Fig.9).These results demonstrate that the instrument possesses excellent spectral imaging performance,with spatial resolution better than 1″and spectral resolution better than 0.0055 nm.The instrument has flexible tolerance capabilities.By adopting the given tolerance values(Table 5),we perform a Monte Carlo analysis in ZEMAX software using sensitivity mode for wavebands at 19 nm and 30 nm.The results indicate that the most significant effects on spectral imaging performance are exerted by tilt tolerances of the primary mirror elements,the secondary mirror’s quadratic coefficients,and the grating’s element tilts.The RMS spot size at the image plane changes within 0.5 pixel size with a probability of 98%.Under these tolerance limits,the image quality degradation of the imaging spectrometer remains within a controllable range.Conclusions We propose and design a high-resolution spectroscopic imaging architecture capable of simultaneous operation in the 17‒21 nm and 28‒32 nm wavelength ranges.The instrument employs a TVLS grating as the dispersive element.By analyzing the TVLS grating aberrations under the non-Roland structure using the optical path function and Fermat’s principle,correction conditions for off-axis grating aberrations and anti-dispersion spectroscopic imaging are derived.Ray-tracing simulation results demonstrate that the off-axis grating aberrations and image dispersion of the imaging spectrometer are well corrected for enabling the system to yield spectral imaging performance close to the diffraction limit.The system exhibits a spatial resolution of better than 1″and a spectral resolution of 0.0055 nm.Sensitivity-based tolerance analysis indicates that the designed solar EUV imaging spectrometer possesses flexible tolerance capabilities.The advanced design of the proposed spectrometer provides a theoretical basis for achieving high spatial resolution,high spectral resolution,and wide temperature diagnostics for solar coronal eruptive activities within a two-dimensional solar disc FOV.Additionally,it holds theoretical and practical significance for the development and construction of future EUV spectroscopic instruments in China.
作者 段紫雯 邢阳光 彭吉龙 闫雷 黄一帆 刘越 李林 Duan Ziwen;Xing Yangguang;Peng Jilong;Yan Lei;Huang Yifan;Liu Yue;Li Lin(School of Optics and Photonics,Beijing Institute of Technology,Beijing 100081,China;Beijing Institute of Spacecraft Environment Engineering,Beijing 100094,China;Purple Mountain Observatory,Chinese Academy of Sciences,Nanjing 210023,Jiangsu,China;Beijing Institute of Astronautical Systems Engineering,Beijing 100076,China)
出处 《光学学报》 EI CAS CSCD 北大核心 2024年第12期285-298,共14页 Acta Optica Sinica
基金 国家自然科学基金(62205027,42274208) 中国科学院战略性先导科技专项(XDA15018300)。
关键词 光学器件 太阳空间探测 太阳极紫外 成像光谱仪 光栅像差校正 光线追迹 optical devices solar space exploration solar extreme ultraviolet imaging spectrometer grating aberration correction ray tracing
  • 相关文献

参考文献16

  • 1WANG YuMing,JI HaiSheng,WANG YaMin,XIA LiDong,SHEN ChengLong,GUO JingNan,ZHANG QuanHao,HUANG ZhengHua,LIU Kai,LI XiaoLei,LIU Rui,WANG JingXiu,WANG Shui.Concept of the solar ring mission:An overview[J].Science China(Technological Sciences),2020,63(9):1699-1713. 被引量:7
  • 2杨孟飞,汪景琇,王赤,宗秋刚,张效信,代树武,邓元勇,冯学尚,王颖,朱成林,张也弛,张庆祥,沈锋钢,田百义,周文艳,李林凌,颜毅华,周桂萍,杨尚斌,熊明,张爱兵,何建森,田晖,李嘉巍,甘为群,夏利东,彭吉龙,黄长宁,姜杰,全林.太阳立体探测任务设想[J].科学通报,2023,68(8):859-871. 被引量:6
  • 3王颖,周文艳,代树武.日地L4/L5点太阳立体探测任务初步设计[J].空间电子技术,2018,15(4):68-74. 被引量:4
  • 4季海生,汪毓明,汪景琇.太阳的立体观测[J].中国科学:物理学、力学、天文学,2019,49(5):44-51. 被引量:12
  • 5Xianyong Bai,Hui Tian,Yuanyong Deng,Zhanshan Wang,Jianfeng Yang,Xiaofeng Zhang,Yonghe Zhang,Runze Qi,Nange Wang,Yang Gao,Jun Yu,Chunling He,Zhengxiang Shen,Lun Shen,Song Guo,Zhenyong Hou,Kaifan Ji,Xingzi Bi,Wei Duan,Xiao Yang,Jiaben Lin,Ziyao Hu,Qian Song,Zihao Yang,Yajie Chen,Weidong Qiao,Wei Ge,Fu Li,Lei Jin,Jiawei He,Xiaobo Chen,Xiaocheng Zhu,Junwang He,Qi Shi,Liu Liu,Jinsong Li,Dongxiao Xu,Rui Liu,Taijie Li,Zhenggong Feng,Yamin Wang,Chengcheng Fan,Shuo Liu,Sifan Guo,Zheng Sun,Yuchuan Wu,Haiyu Li,Qi Yang,Yuyang Ye,Weichen Gu,Jiali Wu,Zhe Zhang,Yue Yu,Zeyi Ye,Pengfeng Sheng,Yifan Wang,Wenbin Li,Qiushi Huang,Zhong Zhang.The Solar Upper Transition Region Imager(SUTRI)Onboard the SATech-01 Satellite[J].Research in Astronomy and Astrophysics,2023,23(6):153-171. 被引量:8
  • 6Bo Chen,Xiao-Xin Zhang,Ling-Ping He,Ke-Fei Song,Shi-Jie Liu,Guang-Xing Ding,Jin-Ping Dun,Jia-Wei Li,Zhao-Hui Li,Quan-Feng Guo,Hai-Feng Wang,Xiao-Dong Wang,Yun-Qi Wang,Hong-Ji Zhang,Guang Zhang,Zhen-Wei Han,Shuang Dai,Pei-Jie Zhang,Liang Sun,Yang Liu software engineer,Peng Wang,Kun Wu,Chen Tao,Shi-Lei Mao,Gui Mei,Liang Yang,Li-Heng Chen,Chun-Yang Han,Bin Huang,Yang Liu mechanical engineer,Shuai Ren,Peng Zhou,Ze-XiWei,Xiao-Xue Zhang,Yue Zhang,Xin Zheng,Yang Wang,Ya Chen,Jing-Jiang Xie,Fei He,Qiao Song,Wei-Guo Zong,Xiu-Qing Hu,Peng Zhang,Jing-Song Wang,Zhong-Dong Yang.Solar X-ray and EUV imager on board the FY-3E satellite[J].Light(Science & Applications),2022,11(12):2939-2951. 被引量:1
  • 7Bo Chen,Guang-Xing Ding,Ling-Ping He.Solar X-ray and Extreme Ultraviolet Imager(X-EUVI)loaded onto China’s Fengyun-3E Satellite[J].Light(Science & Applications),2022,11(2):149-150. 被引量:2
  • 8Chuan Li,Cheng Fang,Zhen Li,MingDe Ding,PengFei Chen,Ye Qiu,Wei You,Yuan Yuan,MinJie An,HongJiang Tao,XianSheng Li,Zhe Chen,Qiang Liu,Gui Mei,Liang Yang,Wei Zhang,WeiQiang Cheng,JianXin Chen,ChangYa Chen,Qiang Gu,QingLong Huang,MingXing Liu,ChengShan Han,HongWei Xin,ChangZheng Chen,YiWei Ni,WenBo Wang,ShiHao Rao,HaiTang Li,Xi Lu,Wei Wang,Jun Lin,YiXian Jiang,LingJie Meng,Jian Zhao.The Chinese Hα Solar Explorer(CHASE) mission: An overview[J].Science China(Physics,Mechanics & Astronomy),2022,65(8):2-9. 被引量:13
  • 9邢阳光,李林,彭吉龙,王姗姗,成一诺.具有非罗兰圆结构的太阳极紫外正入射宽波段成像光谱仪光学设计[J].光学学报,2020,40(23):118-129. 被引量:5
  • 10邓元勇,周桂萍,代树武,王颖,冯学尚,何建森,姜杰,田晖,杨尚斌,侯俊峰,颜毅华,甘为群,白先勇,李乐平,夏利东,黎辉,苏杨,熊明,张也弛,朱成林,林佳本,章海鹰,陈波,何玲平,封莉,张红鑫,孙明哲,张爱兵,陈林杰,谭宝林,张哲,杨建峰,杨孟飞,汪景琇.太阳极轨天文台[J].科学通报,2023,68(4):298-308. 被引量:10

二级参考文献72

共引文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部