期刊文献+

基于神经网络的可穿戴动作识别研究

Research on Wearable Action Recognition Based on Neural Networks
下载PDF
导出
摘要 随着可穿戴设备技术的快速发展,提高人体动作识别准确性已成为关键科技挑战之一。本研究通过构建和优化神经网络模型,采用多层感知机和卷积神经网络,结合创新的数据预处理和增强技术,高效识别复杂动作。实验结果表明,相较于传统方法,改进后的模型显著提升识别精度,具有更好的实用性和可扩展性。 With the rapid development of wearable device technology,improving the accuracy of human motion recognition has become one of the key technological challenges.This study constructs and optimizes a neural network model,employing multilayer perceptrons and convolutional neural networks combined with innovative data preprocessing and enhancement techniques to efficiently recognize complex motions.Experimental results show that the improved model significantly enhances recognition accuracy compared to traditional methods and offers better practicality and scalability.
作者 朱丽 ZHU Li(Wuchang Vocational College,Wuhan Hubei 430000,China)
机构地区 武昌职业学院
出处 《信息与电脑》 2024年第9期90-92,共3页 Information & Computer
关键词 神经网络 可穿戴设备 人体动作识别 识别精度 neural networks wearable devices human motion recognition recognition accuracy
  • 相关文献

参考文献2

二级参考文献18

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部