期刊文献+

便携式医疗设备电池剩余寿命预测算法研究

Research on battery remaining life prediction algorithm for portable medical devices
下载PDF
导出
摘要 目的:为精准有效地预测便携式医疗设备的电池剩余寿命,提出一种基于反向传播(back propagation,BP)神经网络和麻雀搜索(sparrow search algorithm,SSA)算法的SSA-BP算法。方法:首先,通过BP神经网络的结构确定权值以及阈值的总数;其次,利用SSA算法优化初始权值和阈值,并赋值给BP神经网络;最后,通过对输入样本的训练获取预测的输出值。选取不同环境温度(4、24、43℃)下的18650型号锂电池数据进行测试,通过平均绝对误差、均方根误差、平均绝对百分比误差验证SSA-BP神经网络算法和BP神经网络算法对医疗设备电池剩余寿命的预测精度。结果:SSA-BP神经网络算法预测医疗设备电池剩余寿命的平均绝对误差、均方根误差、平均绝对百分比误差均低于BP神经网络算法。结论:SSA-BP神经网络算法能够精准有效地对电池的使用寿命进行预测,提高了电池在实际应用中的可靠性。 Objective To propose a SSA-BP algorithm based on the back propagation(BP)neural network and sparrow search algorithm(SSA)to predict battery remaining life accurately.Methods Firstly,the total number of the weights and thresholds was determined with the structure of the BP neural network;secondly,the initial weights and thresholds were optimized using the SSA algorithm and assigned to the BP neural network;and finally,the predicted output values were obtained by training the input samples.The data of 18650 model lithium batteries at different ambient temperatures(4,24,43℃)were selected for testing,and the prediction accuracy of the SSA-BP neural network algorithm and BP neural network algorithm on the remaining life of medical device batteries was verified by the mean absolute error,root mean square error and mean absolute percentage error.Results The SSA-BP algorithm had the average absolute error,root mean square error and mean absolute percentage error lower than those of the BP neural network when used to predict battery remaining life.Conclusion The SSA-BP algorithm can effectively predict battery remaining life,and enhances battery reliability during practical application.
作者 石磊 安玳宁 高鹏飞 SHI Lei;AN Dai-ning;GAO Peng-fei(Hebei Province Industrial Transformation and Upgrading Service Center,Shijiazhuang 050051,China;Hebei Institute for Drug and Medical Device Control,Shijiazhuang 050200,China)
出处 《医疗卫生装备》 CAS 2024年第8期21-25,共5页 Chinese Medical Equipment Journal
基金 河北省药品监督管理局科技计划项目(2022ZC1017)。
关键词 便携式医疗设备 电池剩余寿命 BP神经网络 麻雀搜索算法 portable medical device battery remaining life BP neural network sparrow search algorithm
  • 相关文献

参考文献13

二级参考文献119

  • 1林成涛,王军平,陈全世.电动汽车SOC估计方法原理与应用[J].电池,2004,34(5):376-378. 被引量:198
  • 2胡任,韩赞东,王克争.基于BP神经网络预测静置电池的剩余电量[J].电池,2006,36(1):58-59. 被引量:11
  • 3夏超英,张术,孙宏涛.基于推广卡尔曼滤波算法的SOC估算策略[J].电源技术,2007,31(5):414-417. 被引量:52
  • 4FENG J, HE Y L. Multi-method integrated on SOC estimation of Li-ion battery[J]. Journal of Theoretical and Applied Information Technology, 2013,48(3) : 1398-1402.
  • 5FENG J, HE Y L. The method research of parameter identification of Li-ion battery base on least square method[J]. Advanced Materi- al Research, 2012,490 : 3854-3858.
  • 6HU X S,SUN F C,ZOU Y. Online model identification of lithi- um-ion battery for electric vehicles[J]. Journal of Central South U- niversity Technology, 2011,18(5) : 1525-1531.
  • 7FENG J,HE Y L. State-of-charge estimation of Li-ion battery using extended kalman filter telkomnika[J]. Indonesian Journal of Elec- trical Engineering, 2013,11 (12) : 7707-7714.
  • 8PLETT G L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs Park3. State and param- eter estimation[J]. Journal of Power Sources, 2004,134:277-292.
  • 9CHARKHGARD M, FARROKHI M. State-of-charge estimation for lithium-ion batteries using neural Networks and EKF [J]. IEEE Transactions on Industrial Electronics, 2010,57(12) :4178-4187.
  • 10赵克刚,罗玉涛,裴锋.基于神经网络的电池荷电状态什计方法[J].中南大学学报:自然科学版,2007,38:931-936.

共引文献207

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部