期刊文献+

基于多轴自注意力的无人机避障模型

UAV Obstacle Avoidance Model Based on Multi-axis Self-attention
下载PDF
导出
摘要 针对无人机在飞行过程中容易因旋翼碰撞而坠毁的问题,提出利用改进的图像识别模型实现自动预警。将瓶颈多轴自注意力模块(BMSA)嵌入到图像识别模型中进行改进,提升模型对细小物体的识别准确率。多轴自注意力层在低分辨率阶段替换原本卷积层,使得模型能够兼顾局部自注意力和全局自注意力。实验结果表明:改进得到的多轴自注意力的残差网络(MS-ResNet)具有较高的障碍物识别准确率,能实现较好的预警效果。 To address the proneness of UAV crash due to rotor collision during flight,an improved image recognition model is proposed to achieve automatic warning.A bottleneck multi-axis self-attention module(BMSA)is embedded into the image recognition model for improvement,enabling the model to improve the recognition accuracy of the model for fine objects.The multi-axis self-attentive layer replaces the original convolutional layer in the low-resolution stage,enabling the model to obtain both local self-attention and global self-attention.The experiments show that the improved multi-axis self-attentive residual network(MS-ResNet)has high accuracy of obstacle recognition and achieve a better early warning effect.
作者 王新文 赵伟杰 WANG Xinwen;ZHAO Weijie(School of Advanced Manufacturing,Fuzhou University,Quanzhou 362251,China;Quanzhou Reserch Center of Equipment Manufacturing of Haixi Institute,Chinese Academy of Science,Quanzhou 362216,China)
出处 《机械制造与自动化》 2024年第4期124-128,共5页 Machine Building & Automation
基金 福建省科技计划引导性项目(2022H0042)。
关键词 图像识别 深度学习 自注意力机制 卷积神经网络 避障模型 无人机 image recognition deep learning self-attention mechanism convolutional neural network obstacle avoidance model UAV
  • 相关文献

参考文献2

二级参考文献11

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部