摘要
针对多项式插值轨迹规划阶次高、面对多个限制条件时优化运算量大等问题,提出水下机器人关节空间基于改进粒子群优化方法,设计以时间最优为目标的5次多项式插值轨迹规划算法。用Fluent求得腿部水阻力系数后,建立多个约束条件方程,通过更改搜索目标降低搜索维度,减少计算量。改进粒子群优化采用可变权重,相较于标准粒子群优化,改进粒子群优化较好地平衡了全局收敛性和收敛速度。通过仿真实验得到各关节的角度、角速度、角加速度曲线,验证了所提出方法的可行性与有效性。
Regarding the high order of polynomial interpolation trajectory planning and the large amount of optimization operations in the face of multiple constraints,a 5-time polynomial interpolation trajectory planning algorithm based on an improved particle swarm optimization method in the joint space of underwater robots with the goal of time optimality is proposed.With the leg water resistance coefficient calculated by Fluent,a number of constraint equations are established.The search target is changed to reduce the search dimension and calculation amount.Compared with standard particle swarm optimization,the improved particle swarm optimization is trade-off between global convergence and computation speed.The angle,angular velocity and angular acceleration curves of each joint are obtained by simulation experiments,which verifies the feasibility and effectiveness of the proposed method.
作者
支程昊
赵东标
ZHI Chenghao;ZHAO Dongbiao(College of Mechanical and Electrical Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
出处
《机械制造与自动化》
2024年第4期208-213,249,共7页
Machine Building & Automation
关键词
水下机器人
轨迹规划
粒子群优化
多项式插值
underwater robot
trajectory planning
particle swarm optimization
polynomial interpolation