期刊文献+

小样本下基于CNN-GRU网络的弹丸落点预测

Projectile Impact Point Prediction Based on CNN-GRU Network under Small Samples
下载PDF
导出
摘要 为充分挖掘弹丸径向速度在时空上的规律,提高弹丸落点预测精度,提出了一种基于卷积神经网络结合门控循环单元的弹丸落点预测方法。分别利用卷积神经网络(CNN)和门控循环单元(GRU)网络对弹丸的径向速度在时间和空间上的强相关性特征进行提取,学习弹丸高度复杂的非线性飞行轨迹,构建弹丸落点预测模型。通过某型炮弹径向速度数据作为训练集和测试集进行弹丸落点预测,并与MLP、LSTM和CNN-LSTM时序预测方法进行比较。实验结果表明,CNN-GRU预测模型能够有效提取径向速度序列中的时空间信息,学习出弹丸相对雷达的位置,相比其他模型具有预测精度高、收敛速度快且稳定性好的优势。 In order to fully explore the law of projectile radial velocity in time and space,and improve the accuracy of projectile impact-point prediction,a method of projectile impact point prediction based on CNN-GRU is proposed.CNN and GRU networks are used respectively to extract the strong correlation characteristics of the projectile radial velocity in time and space,to learn the highly complex nonlinear flight trajectory,and to build the prediction model of projectile impact points.The radial velocity data of a certain type of projectile is used as the training set and test set to predict the impact points,and compared with the time series prediction methods of MLP,LSTM and CNN-LSTM.The experimental results show that the CNN-GRU prediction model can effectively extract the spatiotemporal information in the projectile radial velocity sequence,and learn the position of the projectile relative to the radar.The comparisons with other models show that the predication model has higher prediction accuracy,faster convergence speed and better stability.
作者 王现磊 陈铎 薛景元 王义江 WANG Xianlei;CHEN Duo;XUE Jingyuan;WANG Yijiang(Unit 63861 of PLA,Baicheng 137001,China)
机构地区 解放军
出处 《火力与指挥控制》 CSCD 北大核心 2024年第7期64-69,共6页 Fire Control & Command Control
关键词 径向速度 落点预测 卷积神经网络 门控循环单元 radial velocity impact-point prediction convolutional neural network gated recurrent unit
  • 相关文献

参考文献10

二级参考文献94

  • 1张成.脉冲修正弹药射程预测控制方法[J].弹道学报,2010,22(1):20-23. 被引量:14
  • 2刘吉英,朱炬波,刘也,胡增辉.基于测速定轨体制的布站几何优化设计[J].宇航学报,2007,28(1):53-57. 被引量:7
  • 3侯嫒彬,杜京义,汪梅.神经网络[M].西安:西安电子科技大学出版社,2007.
  • 4Fathi V, Montazer G A. An improvement in RBF learning algo- rithm based on PSO for real time applications [ J 1. Neurocomput- ing, 2013,111(2) : 169 -176.
  • 5Tsekouras G E. A simple and effective algorithm for implementing particle swarm optimization in RBF network's design using input- output fuzzy clustering [ J ]. Neurocomputing, 2013, 108 ( 2 ) : 36 - 44.
  • 6Su X, Fang W, Shen Q, et al. An image enhancement method u- sing the quantum-behaved particle swarm optimization with an a- daptive strategy [ J ]. Mathematical Problems in Engineering, 2013, 2013(1): 1-14.
  • 7Sun J, Fang W, Palade V, et al. Quantum-behaved particle swarm optimization with Gaussian distributed local attractor paint [J]. Applied Mathematics and Computation, 2011, 218 (7): 3763 - 3775.
  • 8Xi M, Sun J, Xu W. An improved quantum-behaved particle swarm optimization algorithm with weighted mean best position [J], Applied Mathematics and Computation, 2008, 205 (2) : 751 -759.
  • 9Rhudy M, Gu Y, Napolitano M R. An analytical approach for comparing linearization methods in EKF and UKF [ J ]. Interna- tional Journal of Advanced Rabotic Systems, 2013,208 (10) : 1 - 9.
  • 10VISHAL C R, YAAKOV B S, PETER W. Projectile i- dentification and impact point prediction [J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(4) : 2004-2021.

共引文献149

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部