期刊文献+

含V型缺口分数阶黏弹性复合材料反平面界面断裂的辛方法

A symplectic method for the anti-plane fracture analysis of an interfaceV-notch in fractional viscoelastic media
下载PDF
导出
摘要 本文提出求解含V型缺口的分数阶黏弹性复合材料反平面界面断裂问题的辛方法.分数阶Kelvin-Zener模型用于描述材料的黏弹性特征;借助Laplace变换,将时域内黏弹性反平面断裂问题的基本方程转换到频域空间;通过引入位移的对偶变量广义应力,建立问题的哈密顿求解体系.在该体系下,对偶方程的本征值和本征解可以利用分离变量法求解,本征解级数展开的系数通过本征解的辛共轭正交关系和外边界条件确定.这样将得到含缺口黏弹性复合材料反平面应力/应变强度因子的解析表达式.最后通过Laplace逆变换,得到时域空间内的应力/应变强度因子.数值算例验证本文方法的准确性,并揭示了分数阶参数、缺口角度和外载荷对应力/应变强度因子的影响. This paper presents a symplectic method for the anti-plane fracture analysis of an interface V-notch in fractional viscoelastic composite media.The fractional Kelvin Zener model is used to describe the viscoelastic characteristics of materials.With the help of Laplace transform,the fundamental equations of an anti-plane viscoelastic fracture problem in time domain are transformed into frequency domain.By introducing the dual generalized stress variables,the Hamiltonian system is established.Then the eigenvalues and eigensolutions of the Hamiltonian dual equation are obtained by the method of separation of variables,and the unknown coefficients of the symplectic series are determined by the symplectic adjoint orthogonal relationship and the outer boundary conditions.In this way,the analytical expression of the anti-plane stress/strain intensity factor of the viscoelastic media with a V-notch is derived obtained.Finally,the intensity factor in time domain is found by inverse Laplace transform.In numerical examples,the accuracy of the presented method is verified,and the effects of fractional order parameters,notch angle and external load on the stress/strain intensity factor are revealed.
作者 徐成辉 孙义国 冷森 邓子辰 XU Cheng-hui;SUN Yi-guo;LENG Seng;DENG Zi-chen(School of Mechanics,Civil Engineering and Architecture,Northwestern Polytechnical University,Xi’an 710129,China;MIIT Key Laboratory of Dynamics and Control of Complex Systems,Northwestern Polytechnical University,Xi’an 710129,China)
出处 《计算力学学报》 CAS CSCD 北大核心 2024年第4期689-695,共7页 Chinese Journal of Computational Mechanics
基金 陕西省自然科学基础研究计划(2022JM-016) 国家自然科学基金(12072266,11702221) 西北工业大学教育教学改革研究项目(双碳专项)(ST2023JGY02)资助.
关键词 辛方法 分数阶黏弹性 界面断裂 反平面 应力强度因子 symplectic method fractional viscoelastic media interfacial fracture anti-plane stress intensity factor
  • 相关文献

参考文献6

二级参考文献31

  • 1XU Mingyu1 & TAN Wenchang2 1. Institute of Applied Mathematics, School of Math & System Science, Shandong University, Jinan 250100, China,2. State Key Laboratory of Turbulence and Complex Systems & Department of Mechanics and Engineering Science, Peking University, Beijing 100871, China.Intermediate processes and critical phenomena: Theory, method and progress of fractional operators and their applications to modern mechanics[J].Science China(Physics,Mechanics & Astronomy),2006,49(3):257-272. 被引量:15
  • 2刘林超,闫启方,黄学玉,姚庆钊,张卫.分数导数型粘弹性阻尼器的动力学有限元方程及数值解[J].橡胶工业,2006,53(5):271-275. 被引量:1
  • 3CHRISTENSEN R M. Theory of Vicoelasticity[M]. New York, Academic Press,1982.
  • 4NAGUIB H E, PARK C B. A study on the onset surface melt fracture of polypropylene materials with foaming additives[J].Journal of Applied Polymer Science, 2008,109 (6) :3571-3577.
  • 5PAWDE S M, DESHMUKH K. Characterization of polyvinyl alcohol/gelatin blend hydrogel films for biomedical applications[J]. Journal of Applied Polymer Science, 2008,109 (5) : 3431-3437.
  • 6CORTES F, ELEJABARRIETA M J. Forced re- sponse of a viseoelastieally damped rod using the superposition of modal contribution functions[J]. J ournal of Sound and Vibration, 2008,315 (1-2) : 58- 64.
  • 7HUANG Y, MOGILEVSKAYA S G, CROUCH S L. Numerical modeling of micro-and macro-behavior of viscoelastic porous materials [J]. Computational Mechanics, 2008,41 (6) :797-816.
  • 8LESEDUARTE M C, QUINTANILLA R. Saint- Venant decay rates for an anisotropie and non-homogeneous mixture of elastic solids in anti-plane shear[J]. International Journal of Solids and Structures ,2008,45 : 1697-1712.
  • 9ZHONG W X, YAO W A. The Saint Venant solutions of Multi-layered composite plates[J]. Advances in Structural Engineering, 1997, 1: 127-133.
  • 10YAO W A, YANG H T. Hamiltonian system based Saint Venant solutions for multi-layered composite plane anisotropie plates[J]. International Journal of Solids and Structures ,2001,38(32) :5807-5817.

共引文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部