摘要
针对抽水蓄能机组振动信号时间序列高度非线性、非平稳性等导致常规预测方法难以准确预测的问题,构建了结合经验模态分解(EMD)、由主成分分析(PCA)改进的核主成分分析(KPCA)和长短期记忆神经网络(LSTM)的抽水蓄能机组振动预测模型。该模型利用EMD算法首先将振动信号进行分解,再利用KPCA筛选出关键影响因子,最后通过LSTM对特征序列进行时间动态建模,实现对抽水蓄能机组振动预测。试验结果表明,所建模型相较传统的LSTM、EMD-LSTM等预测模型具有更好的预测效果,可以更精确地预测振动信号的变化趋势。
In the vibration trend prediction of pumped storage units,the conventional prediction methods are difficult to predict accurately due to the highly nonlinear and non-stationary vibration signal time series.In this paper,a vibration prediction model of pumped storage unit is proposed,which combines empirical mode decomposition(EMD),kernel principal component analysis(KPCA)improved by principal component analysis(PCA)and long short-term memory neural network(LSTM).The model uses EMD algorithm to decompose vibration signals,and the KPCA is used to screen out the key influencing factors.Finally,the LSTM is used to carry out time-dynamic modeling of feature sequences to realize vibration prediction of pumped storage units.Compared with the traditional LSTM,EMD-LSTM and other prediction models,the experimental results show that this model has better prediction effect and can predict the change trend of vibration signals more accurately.
作者
朱雯琪
冯陈
周宇轩
张陈瑞
韩昊轩
ZHU Wen-qi;FENG Chen;ZHOU Yu-xuan;ZHANG Chen-rui;HAN Hao-xuan(College of Electrical and Power Engineering,Hohai University,Nanjing 210098,China)
出处
《水电能源科学》
北大核心
2024年第8期160-163,131,共5页
Water Resources and Power
基金
国家自然科学基金青年基金项目(52209110)
中央高校基本科研业务费专项资金项目(B220202005)
中国博士后科学基金面上基金项目(2022M711017)。