期刊文献+

基于深度学习框架的流媒体图像多标签分类

MULTI-LABEL CLASSIFICATION OF STREAMING MEDIA IMAGES BASED ON DEEP LEARNING FRAMEWORK
下载PDF
导出
摘要 考虑到存在未知类别的大规模流媒体图像多标签分类问题,提出一种基于深度学习框架的多标签分类方法。为了检测图像中是否含有新类标签,提出一种递归类检测器,它通过对图像特征和多个标签之间的关系进行有效编码来学习。为提升方法对大规模数据集处理能力,通过假设新的类图像在特征空间中远离已知类,从而有效地实现分类器和检测器交替学习的批处理模式。实验结果验证了该方法对大规模未知类流媒体图像多标签分类有效性。 Considering the problem of multi-label classification of large-scale streaming images with unknown classes,a multi-label classification method based on a deep learning framework is proposed.To detect whether an image contains a new class of labels or not,a recursive class detector was proposed,which learned by efficiently encoding the relationship between image features and multiple labels.To enhance the method's ability to handle large-scale datasets,a batch mode of learning the classifier and detector alternately was effectively implemented by assuming that the new class media images were far away from the known classes in the feature space.The experimental results verify the effectiveness of the method for multi-label classification of large-scale unknown class streaming media images.
作者 王大林 Wang Dalin(Chongqing Preschool Normal College,Chongqing 404047,China)
出处 《计算机应用与软件》 北大核心 2024年第8期225-231,共7页 Computer Applications and Software
基金 中国教育后勤协会2017年一般课题(YBKT2017021)。
关键词 卷积神经网络 多标签 流媒体图像 检测器 Convolution neural network Multi-Label Streaming media image Detector
  • 相关文献

参考文献8

二级参考文献41

  • 1韩东峰,李文辉,郭武.基于潜在局部区域空间关系学习的物体分类算法[J].计算机学报,2007,30(8):1286-1294. 被引量:5
  • 2Vailaya A,Figueiredo M A T,Jain A K.Image classification for content-based indexing.IEEE Transactions on Image Processing,2001,10(1):117-130.
  • 3Szummer M,Picard R W.Indoor-outdoor image classification //Proceedings of the 1998 IEEE International Workshop on Content Based Access of Image and Video Database.Bombay,India,1998:42-51.
  • 4Oliva A,Torralba A.Modeling the shape of the scene:A holistic representation of the spatial envelope.International Journal of Computer Vision,2001,42(3):145-175.
  • 5Boureau Y L,Bach F,LeCun Y.Learning mid level features for recognition//Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington,USA,2010:2559-2566.
  • 6Jiang H,Xu J.Improved bags-of-words algorithm for scene recognition//Proceedings of the 2nd International Conference on Signal Processing Systems.Dalian,China,2010,2:279-282.
  • 7Hofmann T.Unsupervised learning by probabilistic latent semantic analysis.Journal of Machine Learning Research,2001,42(1 2):177-196.
  • 8Blei D M,Ng A Y,Jordan M I.Latent dirichlet allocation.Journal of Machine Learning Research,2003,3:993-1022.
  • 9Bosch A,Zisserman A,Munoz X.Scene classification using a hybrid generative/discriminative approach.IEEE Transac tions on Pattern Analysis and Machine Intelligence,2008,30(4):712-727.
  • 10Lazebnik S,Schmid C,Ponce J.Beyond bags of features:Spatial pyramid matching for recognizing natural scene cate gories//Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.New York,US,2006:2169-2178.

共引文献99

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部