期刊文献+

基于YOLOP的车道线检测、目标检测及可行驶区域分割算法部署

Deployment of Lane Detection,Object Detection,and Drivable Area Segmentation Algorithms Based on YOLOP
下载PDF
导出
摘要 目前,全景自动驾驶感知中的多任务学习取得了显著成果。其中对象检测和分割任务极其重要,可以帮助决策、提供路线规划和安全信息。然而,目标检测和分割仍有限制,需要大量数据和先验信息。为了使自动驾驶中的多任务学习更加高效准确,本文将嵌入式平台融入车道线检测的研究当中,融合了车道线检测和障碍物检测,可以有效提高计算效率和环境感知。同时,本文使用NVIDIA嵌入式平台对深度学习进行部署并能够保持先进性能。 This paper points out that,at present,multi-task learning in panoramic autonomous driving perception has made significant achievements and achieved remarkable results.Among them,object detection and segmentation tasks are extremely important,which can help in decision-making,route planning and safety information.However,object detection and segmentation still have limitations,requiring large amounts of data and prior information.In order to make multi-task learning in automatic driving more efficient and accurate,this paper integrates the embedded platform into the research of lane detection,integrating lane detection and obstacle detection,which can effectively improve the computing efficiency and environment perception.This paper also deploys deep learning using NVIDIA's embedded platform and maintain advanced performance.
作者 王军淮 邱涵 杨博 张韦毅 钟俊逸 任凤雷 WANG Junhuai;QIU Han;YANG Bo;ZHANG Weiyi;ZHONG Junyi(National Experimental Teaching Demonstration Center for Electromechanical Engineering(Tianjin University of Technology),Tianjin 300384,China;Tianjin Key Laboratory of Advanced Electromechanical System Design and Intelligent Control,Tianjin University of Technology,Tianjin 300384,China)
出处 《科技创新与生产力》 2024年第8期92-97,共6页 Sci-tech Innovation and Productivity
关键词 机器学习 图像识别 障碍物识别 自动驾驶 machine learning image recognition obstacle recognition autonomous driving
  • 相关文献

参考文献4

二级参考文献27

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部