摘要
核子-核子短程关联是核物理的关键问题之一,它会导致核子动量分布出现高动量尾。本工作首先基于轴向形变相对论平均场模型构建了平均场部分原子核的谱函数,并在此基础上引入了短程关联效应的修正。然后利用谱函数在平面波脉冲近似框架内计算了单举电子散射截面,包括准弹性散射部分和Δ共振散射部分。特别是在Δ共振散射区域,通过重新考虑了核子共振态Δ(1232)的电磁结构,有效地改进了理论计算,使理论散射截面与实验数据很好地吻合。本工作进一步将单举散射截面分为短程关联的贡献和平均场的贡献。研究发现,准弹性峰和Δ共振峰不仅反映了平均场结构,而且对短程关联信息敏感。最后,本工作提出了一种从实验截面中提取原子核短程关联强度的方法。
The nucleon-nucleon short-range correlation(NN-SRC)is one of the key issues in nuclear physics that cause highmomentum tails in the nucleon momentum distributions.In this paper,the nuclear spectral functions are constructed based on the axially deformed relativistic mean-field model,and the correction of the short-range correlation effect is introduced.Then,the inclusive scattering cross sections are calculated using the nuclear spectral function and the framework of the plane wave impulse approximation,including both the quasielastic andΔresonance parts.In particular,in theΔresonance region,the electromagnetic structure of the nucleon resonance stateΔ(1232)is reconsidered,which effectively improves the theoretical calculations that can be in better agreement with experimental data.The paper further divides the inclusive scattering cross sections into the contributions of NN-SRC and mean-field.It is found that,the quasielastic peak andΔresonance peak not only reflect the mean-field structure but also are sensitive to NN-SRC information.Finally,we propose a method for extracting the NN-SRC strength of nuclei from experimental cross-section data.
作者
迟子孟
牛清霖
刘健
CHI Zimeng;NIU Qinglin;LIU Jian(School of Data Engineering,Tianjin University of Finance and Economics Pearl River College,Tianjin 301811,China;College of Science,China University of Petroleum(East China),Qingdao 266580,Shandong,China)
出处
《原子核物理评论》
CAS
CSCD
北大核心
2024年第1期510-514,共5页
Nuclear Physics Review
基金
山东省本科教学改革研究重点项目(Z2023297)
山东省研究生教育教学改革研究面上项目(SDYJSJGC2023012)
中国石油大学(华东)教学改革重点项目(CZ2022029)。
关键词
准弹性电子散射
短程关联
相对论平均场
核子动量分布
原子核谱函数
quasielastic electron scattering
short-range correlations
relativistic mean-field
nucleon momentum distributions
nuclear spectral functions