期刊文献+

石英振梁加速度计温度自补偿方法

Temperature Self-compensation Method of Quartz Vibrating Beam Accelerometer
下载PDF
导出
摘要 石英振梁加速度计在温变环境中存在输出漂移,文中采用一种新型软件补偿方法抑制温度漂移。该方法利用石英振梁自身谐振频率表征参考温度,并建立温度补偿模型。较于以温度传感器输出作为参考温度,该方法没有测温误差。在补偿算法上,提出一种基于麻雀搜索算法优化BP神经网络的温度补偿模型,能够克服BP神经网络易陷入局部最优的问题和提升补偿准确性。通过多次温度实验进行建模,对比补偿前后的输出值,零偏稳定性从392.8μg下降至65.5μg,证明该补偿方法的有效性。 Quartz vibrating beam accelerometer has output drift in temperature-changing environment.This article used a new software compensation method to suppress the temperature drift.This solution used the quartz beams'own resonant frequency to characterize the reference temperature and established a temperature compensation model.Compared with using the temperature sensor output as the reference temperature,this method had no temperature measurement error.Regarding the compensation algorithm,a temperature compensation model based on the sparrow search algorithm to optimize the BP neural network was proposed,which can overcome the problem that the BP neural network easily falled into local optimality and improve the compensation accuracy.Model was established based on many temperature experiments,and the output values before and after compensation were compared.The bias stability dropped from 392.8μg to 65.5μg,which can prove the effectiveness of the compensation method.
作者 毛志成 张晗 杨泽宇 林盛受 梁金星 MAO Zhicheng;ZHANG Han;YANG Zeyu;LIN Shengshou;LIANG Jinxing(School of Instrument Science and Engineering,Southeast University;Key Laboratory of Micro-inertial Instrument and Advanced Navigation Technology,Ministry of Education)
出处 《仪表技术与传感器》 CSCD 北大核心 2024年第7期19-24,共6页 Instrument Technique and Sensor
基金 东南大学教学改革研究项目(2021-ly-12)。
关键词 石英振梁加速度计 温度补偿 麻雀搜索算法 BP神经网络 quartz vibrating beam accelerometer temperature compensation sparrow search algorithm back propagation neural network
  • 相关文献

参考文献3

二级参考文献20

  • 1杨挺,杨贵玉,李庆丰.石英振梁加速度计静态输入输出特性[J].中国惯性技术学报,2014,12(3):386-390. 被引量:9
  • 2董景新.惯性仪表-微机械加速度计[M].北京:清华大学出版社,2002.
  • 3Gulmammadov F. Analysis, modeling and compensation o1 bias drift in MEMS inertial sensors[C]//RAST '09. 4th International Conference. Istanbul, 2009: 591-596.
  • 4Vandemeer J E, Li G; McNeil A C. Analysis of thermal hysteresis on micromachined accelerometers[C]// Proceedings of IEEE Sensors. Motorola, Tempe, AZ, USA, 2003: 1235-1238.
  • 5Tanenhaus M, Geis T, Carhoun D, et al. Accurate real time inertial navigation device by application and processing of arrays of MEMS inertial sensors[C]// IEEE Position Location and Navigation Symposium(PLANS). Indian Wells, CA, USA, 2010: 20-26.
  • 6Tan S S, Liu C Y, Yeh L K, et al. Design of low-noise CMOS MEMS accelerometer with techniques for thermal stability and stable DC biasing[C]//Custom Integrated Circuits Conference (CICC). Hsinchu, Taiwan, 2010: 1-4.
  • 7Loui A, Elhadj S, Sirbuly D J, et al. An analytic model of thermal drift in piezoresistive microcantilever sensors[J]. Joumal of Applied Physics, 2010, 107(5): 054508-1-054508-13.
  • 8Zwahlen P, Anne-Marie Nguyen, Dong Yufeng, et al. Navigation grade MEMS accelerometer[C]//Proceedings of IEEE MEMS 2010. Hong Kong, China, 2010:631- 634.
  • 9Dong Y, Zwahlen P, Nguyen A M, et al. Ultra-high precision MEMS accelerometer[C]// Proceedings of IEEE, Transducers' 11. Beijing, China, 2011: 695-698.
  • 10Pan, Yingjun,Li, Leilei,Ren, Chunhua,Luo, Haoling.Study on the compensation for a quartz accelerometer based on a wavelet neural network. Measurement Science and Technology . 2010

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部