期刊文献+

橡胶隔振器疲劳寿命智能预测

Intelligent Prediction of Fatigue Life for Rubber Vibration Isolators
下载PDF
导出
摘要 在不同应变比恒幅疲劳载荷环境下,橡胶隔振器常用一种填充天然橡胶材料制成的哑铃型试件进行单轴疲劳试验,进而构建一种用来预测橡胶疲劳寿命的支持向量回归(Support vector regression,SVR)模型.为改善预测模型的收敛速度、准确度和稳定性,引入改进的麻雀搜索算法(Improved sparrow search algorithm,ISSA)来优化SVR模型超参数.与遗传算法(Genetic algorithm,GA),粒子群算法(Particle swarm optimization algorithm,PSO),标准的麻雀搜索算法(SSA),差分进化-灰狼算法(Hybrid grey wolf optimization,HGWO)优选参数的SVR模型进行对比结果表明,基于ISSA-SVR模型的预测精度、速度和稳定性都表现最佳.为进一步说明ISSA-SVR模型的预测能力,建立考虑应变比影响的疲劳寿命解析模型.对ISSASVR模型、解析模型和两个已发表模型的比较分析表明,ISSA-SVR具有最准确的预测寿命,预测结果聚集在1.5倍分散线以内. Under constant amplitude fatigue loads with different strain ratios,uniaxial fatigue tests are conducted on dumbbell-shaped specimens made from a commonly used filled natural rubber material for rubber vibration isolators.Subsequently,a support vector regression(SVR)model is constructed to predict the fatigue life of the rubber.To improve the convergence speed,accuracy,and stability of the prediction model,an improved sparrow search algorithm(ISSA)is introduced to optimize the hyperparameters of the SVR model.Comparison results with SVR models optimized using the genetic algorithm(GA),particle swarm optimization algorithm(PSO),standard sparrow search algorithm(SSA),and hybrid grey wolf optimization(HGWO)show that the ISSA-SVR model performs best in terms of prediction accuracy,speed,and stability.To further demonstrate the predictive capability of the ISSA-SVR model,a fatigue life analytical model considering the impact of strain ratio was established.Comparative analysis of the ISSA-SVR model,the analytical model,and two published models indicates that the ISSA-SVR model has the most accurate life predictions,with results concentrated within a 1.5 times dispersion line.
作者 王小莉 谢嘉怡 王思卓 WANG Xiaoli;XIE Jiayi;WANG Sizhuo(School of Automobile and Transportation Engineering,Guangdong Polytechnic Normal University,Guangzhou Guangdong 510665)
出处 《广东技术师范大学学报》 2024年第3期7-15,共9页 Journal of Guangdong Polytechnic Normal University
基金 国家自然科学基金项目(51505091) 广东省自然科学基金项目(2014A030310125).
关键词 应变比 疲劳寿命 填充天然橡胶 改进的麻雀搜索算法 支持向量回归 strain ratio fatigue life filled natural rubber improved sparrow search algorithm support vector regression
  • 相关文献

参考文献3

二级参考文献34

  • 1胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:336
  • 2王晖.区域变换搜索的智能算法研究[D].武汉:武汉大学,2011.
  • 3J.Kennedy,R C Eberhart.Particle swarm optimization. Proceedings of the IEEE International Joint Conference on Neural Networks[C]. IEEE,1995.1942-1948.
  • 4Gandomi A H,Yun G J,Yang X S,et al.Chaos-enhanced accelerated particle swarm optimization[J]. Communications in Nonlinear Science and Numerical Simulation,2013,18(2):327-340.
  • 5Tizhoosh H.Opposition-based learning:A new scheme for machine intelligence. Proceedings of International Conference on Intelligent Agent,Web Technologies and Internet Commerce[C]. Vienna:IEEE,2005.695-701.
  • 6S Rahnamayan,H R Tizhoosh,M M A Salama.Opposition-based differential evolution algorithm. IEEE Congress on Evolutionary Computation[C]. Canada:IEEE,2006.2010-2017.
  • 7Wang H,Li H,Liu Y,et al.Opposition-based particle swarm algorithm with cauchy mutation. IEEE Congress on Evolutionary Computation[C]. Singapore:IEEE,2007.4750-4756.
  • 8Wang H,Wu Z J,Rahnamayan.Enhancing particle swarm optimization using generalized opposition-based learning[J]. Information Sciences,2011,181(20):4699-4714.
  • 9Griffiths,David J.Introduction to Electrodynamics(3rd Ed)[M]. Prentice Hall,1998.386-389.
  • 10Rosenbrock H H.An automatic method for finding the greatest or least value of a function[J]. Computer Journal,1960,3(3):175-184.

共引文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部