期刊文献+

Operator Equations Inducing Some Generalizations of Slant Hankel Operators

原文传递
导出
摘要 An extension of slant Hankel operator,namely,the kth-orderλ-slant Hankel operator on the Lebesgue space L^(2)(T^(n)),where T is the unit circle and n≥1,a natural number,is described in terms of the solution of a system of operator equations,which is subsequently expressed in terms of the product of a slant Hankel operator and a unitary operator.The study is further lifted in Calkin algebra in terms of essentially kth-orderλ-slant Hankel operators on L^(2)(T^(n)).
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2024年第8期2017-2036,共20页 数学学报(英文版)
  • 相关文献

参考文献1

二级参考文献14

  • 1BROWN A, HALMOS P R. Algebraic properties of Toeplitz operators [J]. J. Reine Angew. Math., 1963/1964, 213: 89-102.
  • 2MARTINEZ-AVENDANO R A, When do Toeplitz and Hankel operators commute? [J]. Integral Equations Operator Theory, 2000, 37(3): 341-349.
  • 3GUO Kunyu, ZHENG Dechao. Essentially commuting Hankel and Toeplitz operators [J]. J. Funct. Anal., 2003, 201(1): 121-147.
  • 4AXLER S, CUCKOVIC Z. Commuting Toeplitz operators with harmonic symbols [J]. Integral Equations Operator Theory, 1991, 14(1): 1-12.
  • 5STROETHOFF K. Essentially commuting Toeplitz operators with harmonic symbols [J]. Canad. J. Math., 1993, 45(5): 1080-1093.
  • 6AXLER S, CUCKOVIC Z, RAO N V. Commutants of analytic Toeplitz operators on the Bergman space [J]. Proc. Amer; Math. Soc., 2000, 128(7): 1951-1953.
  • 7CUCKOVIC Z, RAO N V. Mellin transform, monomial symbols, and commuting Toeplitz operators [J]. J. Funct. Anal., 1998, 154(1): 195-214.
  • 8GU Caixing, ZHENG Dechao. The semi-commutator of Toeplitz operators on the bidisc [J]. J. Operator Theory, 1997, 38(1): 173-193.
  • 9ZHENG Dechao. Commuting Toeplitz operators with pluriharmonic symbols [J]. Trans. Amer. Math. Soc., 1998, 850(4): 1595-1618.
  • 10LEE Y J. Pluriharmonic symbols of commuting Toeplitz type operators on the weighted Bergman spaces [J]. Canad. Math. Bull., 1998, 41(2): 129-136.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部