期刊文献+

Weakly Approximate Diagonalization of Homomorphisms into Finite von Neumann Algebras

原文传递
导出
摘要 Let A be a unital C^(∗)-algebra and B a unital C^(∗)-algebra with a faithful traceτ.Let n be a positive integer.We give the definition of weakly approximate diagonalization(with respect toτ)of a unital homomorphismφ:A→Mn(B).We give an equivalent characterization of McDuff Ⅱ_(1) factors.We show that,if A is a unital nuclear C^(∗)-algebra and B is a type Ⅱ_(1) factor with faithful traceτ,then every unital^(∗)-homomorphism φ:A→M_(n)(B)is weakly approximately diagonalizable.If B is a unital simple infinite dimensional separable nuclear C^(∗)-algebra,then any finitely many elements in Mn(B)can be simultaneously weakly approximately diagonalized while the elements in the diagonals can be required to be the same.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2024年第9期2187-2194,共8页 数学学报(英文版)
基金 supported by the Natural Science Foundation of Chongqing Science and Technology Commission(Grant No.cstc2020jcyj-msxmX0723) the Research Foundation of Chongqing Educational Committee(Grant No.KJQN2021000529) supported by the National Natural Science Foundation of China(Grant Nos.11871127,11971463)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部