摘要
为了克服传统芬顿催化剂的降解速率慢、pH适用范围窄、难回收等缺点,采用浸涂溶胶-凝胶法制备了玻璃纤维负载的α-Fe_(2)O_(3)/CuFe_(2)O_(4)异质结薄膜(FCGF),对其结构、形态和化学组成进行表征,并将其用于亚甲基蓝的光芬顿催化降解,考察其催化活性、pH值适用性和重复使用稳定性。结果表明:CuFe2O4颗粒生长在α-Fe_(2)O_(3)颗粒表面,形成α-Fe_(2)O_(3)/CuFe_(2)O_(4)异质结;在模拟太阳光辐射条件下,加入2 g FCGF和20 mmol/L的H_(2)O_(2),50 mL质量浓度为30 mg/L的MB溶液在40 min后降解率达到97%,而在相同条件下加入α-Fe_(2)O_(3)与CuFe_(2)O_(4)降解率分别为20%和30%,其催化活性的增强可归因于异质结光催化剂产生的光诱导电位差驱动的光生载流子的有效分离;同时,FCGF在宽pH范围显示出较高活性,pH=10时,MB溶液40 min后降解效率仍达到63%;FCGF具有良好的稳定性,5次循环后其催化性能没有衰减,反应40 min后MB降解率仍可达97%。
In order to overcome the disadvantages of the traditional Fenton catalyst,such as slow degradation rate,small pH range and difficulty in recovery,glass fiber supportedα-Fe_(2)O_(3)/CuFe_(2)O_(4) heterojunction films(FCGF)were prepared by dip coating sol-gel method.The structure,morphology,and chemical composition of FCCF were characterized.And FCGF was used for photocatalytic degradation of methylene blue(MB)by Fenton,investigating its catalytic activity,pH adaptability,and stability for repecdoed use.The results show that CuFe2O4 particles grow on the surface ofα-Fe_(2)O_(3) particles and formα-Fe_(2)O_(3)/CuFe_(2)O_(4) heterojunction;under simulated solar radiation conditions,adding 2 g of FCGF and 20 mmol/L of H_(2)O_(2),50 mL of MB solution with a concentration of 30 mg/L achieved a degradation rate of 97%after 40 min,while addingα-Fe_(2)O_(3) and CuFe_(2)O_(4) under the same conditions had a degradation rate of 20%and 30%,respectively.The enhanced catalytic activity could be attributed to the effective separation of photo generated carriers driven by the photo induced potential difference generated by heterojunction photocatalysts.At the same time,FCGF showed high activity in a wide pH range.At pH=10,the degradation efficiency of MB solution still reached 63%after 40 min.FCGF has good stability,and its catalytic performance does not deteriorate after 5 cycles,the degradation rate of MB can still reach 97%after reaction for 40 min.
作者
赵永男
郑翔云
孙红玉
高海燕
ZHAO Yongnan;ZHENG Xiangyun;SUN Hongyu;GAO Haiyan(School of Material Science and Engineering,Tiangong University,Tianjin 300387,China;College of Ecology and Resource Engineering,Wuyi University,Wuyishan 354300,Fujian Province,China;Huafang Engineering Technology Research Institute Co.,Ltd.,Binzhou 256600,Shandong Province,China)
出处
《天津工业大学学报》
CAS
北大核心
2024年第4期19-23,共5页
Journal of Tiangong University
基金
国家自然科学基金资助项目(21703152)
天津市青年科学基金资助项目(17JCQNJC06100)。