期刊文献+

基于BP和RBF神经网络的折叠网壳帐篷风压系数预测对比研究

Comparative study on Wind Pressure Coefficient Prediction of Folding Reticulated Shell Tent Based on BP and RBF Neural Networks
下载PDF
导出
摘要 为了全面掌握折叠网壳帐篷风荷载分布特性,分别利用BP神经网络和RBF神经网络对折叠帐篷在风速为20m/s时风向角0°、45°、90°三种工况下风压系数进行预测对比分析。与风洞试验结果相比,BP神经网络和RBF神经网络在折叠帐篷风压系数的分布趋势均能够达到较好的吻合。在风压系数的定量分析上,RBF神经网络在时间效率和准确性上均比BP神经网络表现更好。两种神经网络模型在风压系数预测上的优缺点,可为类似工程神经网络模型构建提供参考。 To comprehensively understand wind load distribution characteristics in folding reticulated shell tents,both the BP neural network and the RBF neural network are used to predict and compare the wind pressure coefficient under three working conditions:wind direction angles of 0°,45°,and 90°,with a wind speed of 20m/s.Comparing the results with those from wind tunnel tests,it indicates that the wind pressure coefficient distribution trend predicted by both the BP neural network and the RBF neural network aligns well.In quantitative analysis,the RBF neural network outperforms the BP neural network in terms of time efficiency and accuracy.Understanding the strengths and weaknesses of these neural network models in predicting wind pressure coefficients provide valuable references for constructing similar neural network models.
作者 黄政 Huang Zheng(North China Municipal Engineering Design&Research Institute Co.,Ltd.,Tianjin 300074,China)
出处 《特种结构》 2024年第4期64-69,共6页 Special Structures
关键词 BP 神经网络 RBF 神经网络 折叠网壳帐篷 风压系数 预测 BP neural network RBF neural network Folding reticulated shell tent Wind pressure coefficient Prediction
  • 相关文献

参考文献4

二级参考文献26

  • 1段永胜,王宇,余宏明.基于正交设计和数值模拟的边坡稳定敏感性研究[J].公路交通科技(应用技术版),2010,6(9):165-168. 被引量:12
  • 2王清湘,赵国藩,林立岩.高强混凝土柱延性的试验研究[J].建筑结构学报,1995,16(4):22-31. 被引量:78
  • 3赵国藩,张德娟,黄承逵.钢管砼增强高强砼柱的抗震性能研究[J].大连理工大学学报,1996,36(6):759-766. 被引量:60
  • 4李方慧,倪振华,沈世钊.POD方法在双坡屋盖风压场预测中的应用[J].工程力学,2007,24(2):68-73. 被引量:18
  • 5Kwang-Baek Kim,Dong-Un Lee,Kwee-Bo Sim.Performance improvementof fuzzy RBF networks[Z].
  • 6First International Conference,ICNC 2005.Advances in Natural Computation[C].Proceedings,Part I(Lecture Notes in Computer Science Vol.3610),2005:237.
  • 7徐丽娜.神经网络控制[M].北京:人民交通出版社,2000.
  • 8Kwang-Baek Kim,Dong-Un Lee,Kwee-Bo Sim.Performance improvement of fuzzy RBF networks // Advances in Natural Computation[C].First International Conference,ICNC 2005.Proceedings,Part Ⅰ(Lecture Notes in Computer Science Vol.3610),2005:237 -244.
  • 9郭晶,杨章玉.MATLAB6.5辅助神经网络分析与设计[M].北京:电子工业出版社,2002.
  • 10Chunlin Zhang,Ju Jiang,Mohamed Kamel.Comparison of BPL and RBF Network in Intrusion Detection System.Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science),v 2639,Rough Sets,Fuzzy Sets,Data Mining,and Granular Computing,2003,466 -470.

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部