期刊文献+

应用人工神经网络预测室内全年动态采光

Application of Artificial Neural Network for Predicting Indoor Annual Dynamic Daylighting
下载PDF
导出
摘要 在建筑设计早期阶段,了解建筑形态参数与室内采光之间的关系对设计优化至关重要。本文采用多层感知器(Multilayer Perceptron,MLP)神经网络,以四种主要特征(室外遮挡情况、建筑形态特征、开窗设置、测点位置信息)作为MLP的输入参数,通过计算机模拟收集的数据来构建神经网络,预测室内的全年自然采光质量(UDI<100 lx、UDI 100~2000 lx、UDI>2000 lx)。研究结果显示多层感知器神经网络模型在测试集中的回归决定系数R 2为0.984,均方误差MSE为11.624,准确性较高。对神经网络进行权重分析的结果表明,外部遮挡物的高度和建筑进深对输出结果影响最为显著。而窗台底部的标高和测点距窗户的距离对输出结果UDI的影响较小。神经网络模型为建筑设计预测日光提供了一种新的智能方法,有助于辅助建筑早期的设计决策。 In the early stage of architectural design,understanding the relationship between architectural form parameters and interior daylighting is crucial for design optimization.This study employs a Multilayer Perceptron(MLP)neural network,takes four main features(outdoor occlusion situation,architectural form characteristics,window opening settings,and measurement point location information)as the input parameters of the MLP,and builds the neural network through the data collected by computer simulation to predict the annual indoor natural daylighting quality(UDI<100 lx,UDI 100~2000 lx,UDI>2000 lx).The research results demonstrate that the MLP neural network model achieved a regression coefficient R 2 of 0.984 and a mean squared error(MSE)of 11.624 on the test dataset,indicating high accuracy.The weight analysis of the neural network reveals that the external shading height and building depth significantly influence the output.In contrast,the elevation of window sills and the distance of measurement points from windows have a minor impact on the results.The neural network model provides a new intelligent approach for predicting daylight in architectural design,assisting in early-stage design decision-making.
作者 白雪 吴蔚 吴农 BAI Xue;WU Wei;WU Nong(School of Architecture and Urban Planning,Nanjing University,Nanjing 210093,China;School of Mechonics,Civil Engineering and Architecture,North western Poly technical University,Xi’an 710072,China)
出处 《照明工程学报》 2024年第4期81-87,共7页 China Illuminating Engineering Journal
关键词 建筑设计早期阶段 人工神经网络 全年动态采光 神经网络权重分析 early-stage architectural design artificial neural networks year-round dynamic lighting neural network weighting analysis
  • 相关文献

参考文献3

二级参考文献77

  • 1宋绍剑,朱靖旭.基于Mask R-CNN和迁移学习的水下生物目标识别研究[J].计算机应用研究,2020,37(S02):386-388. 被引量:10
  • 2Jiangquan ZHANG,Yi SUN,Liang GUO,Hongli GAO,Xin HONG,Hongliang SONG.A new bearing fault diagnosis method based on modified convolutional neural networks[J].Chinese Journal of Aeronautics,2020,33(2):439-447. 被引量:45
  • 3Love J,Navvab M.The vertical-to-horizontal illuminanceratio:A new indicator of daylighting performance.Journalof the Illuminating Engineering Society 1994;23:50~61.
  • 4Nabil A,Mardaljevic J.Useful daylight illuminance:Anew paradigm for assessing daylight in buildings.LightingResearch and Technology 2005;37:41~59.
  • 5Mardaljevic J,Heschong L,Lee E.Daylight metrics andenergy savings.Lighting Research and Technology 2009;41:261~283.
  • 6Mardaljevic J.Examples of climate-based daylightmodelling:Proceedings of CIBSE National Conference2006:Engineering the Future,London,Mar 21~22:2006.
  • 7F Cantin and M-C Dubois.Daylighting metrics based onilluminance,distribution,glare and directivity,LightingResearch and Technology 2011;43:291~307.
  • 8E.Vine,E.Lee,R.Clear,D.DiBartolomeo,S.Selkowitz.Office workers response to an automated Venetian blind andelectric lighting system-a pilot study,Energy and Buildings 28(2)(1998).
  • 9S.Selkowitz.High performance glazing systems-architecturalopportunities for the 21st century,in:Proceedings of GlassProcessing Days(GPD)Conference,Tampere,Finland,1999.
  • 10C.F.Reinhart.Effects of interior design on the daylightavailability in open plan offices,Conference Proceedings ofthe ACEEE Summer Study on Energy Efficient Buildings,2002,pp.1~12.

共引文献214

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部