期刊文献+

智能咽拭子采样机器人系统的设计与开发

Design of automatic nucleic acid sampling system based on Raspberry PI robotic arm
下载PDF
导出
摘要 针对近年来防疫工作的需要,各种疫情防控机器人快速发展,传统疫情防控机器人的功能多为隔离病房护理和医疗物品递送,而较少能对病人进行核酸采样,本文设计了一种基于树莓派的智能咽拭子采样机器人系统,该系统具有核酸采样、数据上传、人脸识别等功能。当机械臂进行核酸采样时,先使用双目摄像机测距,再通过深度学习训练出可以进行人的面部和口部识别的模型,得到口部三维坐标后,机械臂采用运动学逆解得出末端运动轨迹,自动进行核酸采样。与现有疫情防控机器人相比,本系统填补了在核酸采样方面的空白,具有高效、智能、便捷、灵活的特点。实验测试表明,所设计的核酸采样机器人可以完成口腔位置定位、取咽拭子、口腔咽拭子核酸采样和取放咽拭子等功能,且目标检测的精度达到85%以上,能精确识别不同位置和不同明暗程度的人脸。 In response to the recent need for epidemic prevention,various robots have rapidly developed.Traditional epidemic prevention and control robots mainly perform tasks such as nursing in isolation wards and delivering medical supplies,with less focus on collecting nucleic acid samples from patients.This paper designs an intelligent throat swab sampling robot system based on Raspberry Pi to address this gap.The system integrates functions including nucleic acid sampling,data uploading,and facial recognition.During nucleic acid sampling,the robotic arm first measures distances using binocular cameras,then employs a deep learning model trained for facial and oral recognition.After obtaining the three-dimensional coordinates of the oral cavity,the robotic arm uses kinematic inverse solutions to derive the end-effector trajectory for automated nucleic acid sampling.Compared to existing epidemic prevention and control robots,this system fills the gap in nucleic acid sampling,offering efficiency,intelligence,convenience,and flexibility.Experimental tests demonstrate that the designed nucleic acid sampling robot can accurately locate the oral cavity,obtain throat swabs,perform nucleic acid sampling from oral swabs,and handle swab retrieval and placement.The system achieves an accuracy of over 85%in target detection,accurately identifying faces in different positions and lighting conditions.
作者 王子铭 孙永俣 郑智康 乐洋 WANG Ziming;SUN Yongyu;ZHENG Zhikang;LE Yang(School of Integrated Circuit Science and Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210000,China;School of Computer Science,NJUPT,Nanjing University of Posts and Telecommunications,Nanjing 210000,China;School of Geographic and Biologic Information,Nanjing University of Posts and Telecommunications,Nanjing 210000,China)
出处 《智能计算机与应用》 2024年第8期184-190,共7页 Intelligent Computer and Applications
关键词 深度学习 人脸识别 运动学逆解 deep learning face identification inverse kinematics
  • 相关文献

参考文献6

二级参考文献28

  • 1章定国,李德昌,谢大雄.树形机器人动力学L-E法及其系数矩阵解剖[J].机器人,1996,18(2):78-82. 被引量:2
  • 2陈智.影响匹配技术研究[D].武汉:华中师范大学,2007.
  • 3HeikoHirschmuller. Accurate and Effcient Stereo Process- ing by Semi- Global Matching and Mutual Information [ M]. IEEE,2005.
  • 4S. Birchfield and C. Tomasi. Muhiway cut for stereo and motion with slanted surface [ M ]. In ICCV, pages 489 - 495,1999.
  • 5M. Bleyer and M. C, elautz. Alayered stereo algorithm using image segmentation and global visibility constraints [ M ]. ICIP,2004.
  • 6V. Kolmogorov and R. Zabih. Computing visual correspon- dence with occlusions using graph cuts[ M]. ICCV ,2001.
  • 7V. Kolmogorov and R. Zabih. Multi - camera scene recon- struction via graph cuts[ M]. ECCV ,2002.
  • 8D.Comaniciu and P. Meer. Meanshift: A robust approach toward feature space analysis [ J ]. IEEE : PAMI, 24 ( 5 ) : 603 - 619,May 2002.
  • 9于丰博,杨惠忠,卿兆波.基于D-H参数法的二自由度并联机械手逆运动学求解[J].制造业自动化,2015,37(22):10-13. 被引量:10
  • 10张旭,郑泽龙,齐勇.6自由度串联机器人D-H模型参数辨识及标定[J].机器人,2016,38(3):360-370. 被引量:72

共引文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部