摘要
通过归纳一线人工经验,确定关键参数和权重系数,形成“人工+智能”复合最佳回归公式;通过电脑编辑智能程序,实时采集各关键参数,精准预测绩效指标,进而指导实际生产管理。模型铁水硅成分预测准确度90%以上,改进后铁水平均硅降低约0.04%,实现了高炉生产高效运行,经济效益显著。
By summarizing the first-line manual experience,determine key parameters and weight coefficients,form the"artificial+intelligence"compound optimal regression formula;by editing smart programs on computers,real-time collection of key parameters,accurately predict performance indicators,and then guide the actual production management.The model can predict the silica content of blast furnace melted iron with more than 90%accuracy.After the model is implemented,the average silica content of blast furnace melted iron is reduced by about 0.04%,and the high efficiency operation of blast furnace is realized with remarkable economic benefits.
作者
赵丽华
王志刚
ZHAO Lihua;WANG Zhigang(Laiwu Branch of Shandong Iron and Steel Co.,Ltd.,Laiwu 271104,China)
出处
《山东冶金》
CAS
2024年第4期54-56,60,共4页
Shandong Metallurgy
关键词
高炉铁水
硅含量
复合回归
关键参数
预测准确度
blast furnace melted iron
silica content
compound regression
key parameters
prediction accuracy