摘要
针对某钢厂4300 mm精轧机在实际运行过程中存在的问题,提出以镰刀弯质量问题为突破口的方法,展开轧机镰刀弯状态识别技术研究。首先从对轧机和轧制工艺等多源数据进行多维角度挖掘和提取,然后以三维数字可视化方法为辅,建立设备机理和数据相融合的全方位的钢板镰刀弯和轧制状态自动分析模型,对当前钢坯的镰刀弯状态进行实时预测。结果表明,该方法对于促进生产稳定运行,提高产品质量保证能力具有重要意义。
Aiming at the problems existing in the actual operation of a 4300 mm finish rolling mill in a certain steel plant,a method is proposed to take the quality problem of sickle bending as the breakthrough point,and research is carried out on the recognition technology of the sickle bending state of the rolling mill.Firstly,multi-dimensional mining and extraction of multi-source data such as rolling mills and rolling processes are carried out.Then,with the assistance of three-dimensional digital visualization methods,a comprehensive automatic analysis model for steel plate sickle bending and rolling status is established,which integrates equipment mechanism and data.Real time prediction of the sickle bending status of the current steel slab is carried out.The results indicate that this method is of great significance in promoting stable production operation and improving product quality assurance capabilities.
作者
周平
霍宪刚
黄少文
陈涛
ZHOU Ping;HUO Xiangang;HUANG Shaowen;CHEN Tao(The Research Institute of Shandong Iron and Steel Group Co.,Ltd.,Jinan 271104,China)
出处
《山东冶金》
CAS
2024年第4期57-60,共4页
Shandong Metallurgy
关键词
轧机
镰刀弯
多源数据
分析模型
实时预测
rolling mill
sickle bend
multi-source data
analytical model
real-time prediction