期刊文献+

基于深度学习的电力作业现场风险识别技术

Risk Identification Technology for Power Operation Site Based on Deep Learning
下载PDF
导出
摘要 在带电高空环境作业时,通常要求作业人员佩戴安全帽、安全绳等防护措施,同时规范作业人员操作行为,避免触电等安全事故发生,一旦发现有安全隐患要及时发出警告。传统的监督方式为人工检测,通过现场安全员或者是监控摄像头的监督,存在人工成本高、效率低下的问题。随着深度学习在图像处理领域的发展,实时的目标检测与测距技术已经越来越多地应用在电力作业的安全防控领域。但目前的检测算法针对电力作业环境存在外部干扰大、检测准确率低的问题。因此本文在最新的YOLO v8的基础上,引入了BoTNet模块优化现有目标检测算法,并且仅在出现作业人员的区域进行目标检测,有效减少了检测时间,提高了目标检测的正确率。 When working in an electrified high-altitude environment, it is usually required that the operators wear protective measures such as safety helmets and safety ropes,and regulate their operating behavior to avoid safety accidents such as electric shock.Once a safety hazard is discovered,a warning should be issued in a timely manner.The traditional supervision method is manual inspection,supervised by on-site safety officers or surveillance cameras, which all have the problems of high labor costs and low efficiency. With the development of deep learning in the field of image processing, real-time object detection and ranging technology has been increasingly applied in the safety prevention and control of power operations.However,current detection algorithms have problems with high external interference and low detection accuracy in the power operation environment.Therefore,based on the latest YOLO v8,this article introduces the BoTNet module to optimize existing object detection algorithms,and only performs object detection in areas where there are operators, effectively reducing detection time and improving the accuracy of object detection.
作者 李海金 Li Haijin(Guangdong Hydropower Yunnan Investment Co.,Ltd,Kunming 650000,Yunnan,China)
出处 《云南电力技术》 2024年第4期46-49,共4页 Yunnan Electric Power
关键词 人员识别 深度学习 作业风险识别 神经网络 Personnel identification deep learning job risk identification neural networks
  • 相关文献

参考文献7

二级参考文献62

  • 1程超,周渝慧,岳开伟,杨建,何战勇,梁娜.城市绿色电力战略环境评价指标体系[J].中国电力,2012,45(3):76-80. 被引量:9
  • 2栗清振(LiQingzhen).我国电力将进入绿色发展新阶段(Theelectricpowerofourcountrywillenterthegreendevelopmentinthenewperiod)[N].中国电力报(ChinaElectricPowerNewspaper),2012-11-15(5).
  • 3Wu C R, Chang C, Lin H L. Evaluating the organization- al performance of Taiwan Residents hospitals using the fuzzy ana- lytic hierarchy process [ J]. Journal of American Acade- my of Business, 2006, 9 (2): 201-210.
  • 4李远远(LiYuanyuan).基于粗糙集的指标体系构建及综合评价方法研究(Theresearchofconstructionoftheindicatorsystemandcomprehensiveevaluationmethodbasedonroughset)[D].武汉:武汉理工大学(Wu-han:WuhanUniversityofTechnology),2009.
  • 5朱建军(ZhuJianjun).层次分析法的若干问题研究与应用(Theresearchandapplicationoftheanalytichi-erarchyprocess)[D].沈阳:东北大学(Shenyang:NortheasternUniversity),2005.
  • 6兰继斌(LanJibin).关于层次分析法优先权重及模糊多属性决策问题研究(Researchonprioritiesofana-lytichierarchyprocessandproblemsoffuzzymultipleat-tributedecisionmaking)[D].成都:西南交通大学(Chengdu:SouthwestJiaotongUniversity),2006.
  • 7李清奇.电力施工检修作业现场人身安全风险控制[J].电世界,2008,49(7):34-37. 被引量:1
  • 8郭召松.发电企业人因事故分析与控制[J].中国电力,2009,42(5):48-51. 被引量:5
  • 9刘超,罗云,仝世渝,李佳蓉.基于层次分析法的电力企业员工安全素质测评指标体系研究[J].中国安全科学学报,2009,19(9):132-138. 被引量:33
  • 10李秀卿,尚景刚,姜世金,刘子军,宋云峰.基于模糊区间数的黑启动方案评估层次分析法[J].电工电能新技术,2010,29(2):57-61. 被引量:13

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部