摘要
受负载、环境温度、风速、太阳辐射等多种因素影响,采用单一模型对输电线路温度进行预测的准确度较低。文章提出基于集合经验模态分解(EEMD)–极限学习机(ELM)的输电线路温度预测模型,并进行了试验验证。试验结果表明,相较BP神经网络模型、SVM模型,文章提出的预测模型的预测准确度较高。
Due to many factors such as load,ambient temperature,wind speed,solar radiation,etc.,the accuracy of using a single model to predict the transmission line temperature is low.A temperature prediction model of transmission line based on ensemble Empirical Mode decomposition(EEMD)and Extreme Learning Machine(ELM)is proposed and verified by experiments.The experimental results show that compared with BP neural network model and SVM model,the prediction accuracy of the proposed model is higher.
作者
王新涛
郑强
牟磊
李宗
赵建坤
WANG Xintao;ZHENG Qiang;MOU Lei;LI Zong;ZHAO Jiankun
出处
《电力系统装备》
2024年第7期131-132,152,共3页
Electric Power System Equipment
关键词
输电线路
温度
集合经验模态分解
极限学习机
transmission lines
temperature
ensemble empirical mode decomposition
extreme learning machine