期刊文献+

基于卷积注意力的单导联心电图房颤检测方法

Single Lead Electrocardiogram Atrial Fibrillation Detection Method Based on Convolutional Attention
下载PDF
导出
摘要 随着可穿戴心电设备的普及,从单导联心电图中自动检测房颤的方法越来越重要。针对可穿戴心电设备采集的单导联心电图中存在噪声干扰的问题,提出一种基于卷积注意力的残差神经网络模型Resnet34-CAB。通过融合卷积注意力块(CAB),在模型复杂度少量增加的情况下,选择性地关注心电图的关键特征,自适应地抑制噪声,提高了模型的检测性能。在公开数据集上的实验结果表明,Resnet34-CAB模型优于Resnet34、Resnet34-Transformer模型,验证了融合CAB的有效性。 With the popularity of wearable electrocardiographic devices,the method of automatically detecting atrial fibrillation from single lead electrocardiograms is becoming increasingly important.A residual neural network model Resnet34-CAB based on convolutional attention is proposed to address the issue of noise interference in single lead electrocardiograms collected by wearable electrocardiographic devices.By integrating Convolutional Attention Blocks(CAB),the detection performance of the model is improved by selectively focusing on key features of the electrocardiogram and adaptively suppressing noise,with a small increase in model complexity.The experimental results on public datasets show that the Resnet34 CAB model outperforms the Resnet34 and Resnet34 Transformer models,verifying the effectiveness of the fusion CAB.
作者 丘荣建 王剑卓 QIU Rongjian;WANG Jianzhuo(Guangdong University of Technology,Guangzhou 510006,China)
机构地区 广东工业大学
出处 《自动化与信息工程》 2024年第4期18-23,共6页 Automation & Information Engineering
基金 广东省基础与应用基础研究基金(2022A1515011445)。
关键词 单导联心电图 卷积注意力块 房颤检测 残差神经网络 single lead electrocardiogram convolutional attention block atrial fibrillation detection residual neural network

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部