摘要
农作物产量合理预测对保障粮食安全和进行粮食生产决议具有重要意义。本文以产量预测算法为主线,总结了基于传统算法和基于深度学习算法进行产量预测的原理和流程。其中多变量时间预测模型将成为研究的主流,多尺度遥感信息和深度学习技术融合将对未来农作物产量的预测产生重要影响。
The reasonable prediction of crop yield is of great significance for ensuring food security and making food production decisions.This paper takes yield prediction algorithm as the main line,summarizes the principle of yield prediction based on traditional algorithm and deep learning algorithm.The multi-variable time prediction model will become the mainstream of research,and the fusion of multi-scale remote sensing information and deep learning technology will have an important impact on future crop yield prediction.
作者
潘赟
李源
PAN Yun;LI Yuan(Faculty of Information Engineering,Xinyang Agriculture and Forestry University,Xinyang Henan 464000,China)
出处
《信息与电脑》
2024年第10期168-171,共4页
Information & Computer
基金
河南省科技公关项目《基于Graph分级多模态融合网络的信阳毛尖产量预测研究》(项目编号:242102210059)。
关键词
农作物
产量预测
多尺度遥感信息
深度学习
crops
yield prediction
multi-scale remote sensing information
deep learning