摘要
文章提出一种基于多模态注意力网络(Span-based Multi-Modal Attention Network,SMAN)的实体关系联合抽取算法,该算法通过完形填空机制建模文本上下文信息,并利用模态增强注意力模块(Modal Enhancement Attention Module,MEA)捕捉跨模态数据间的细粒度交互特征。实验表明,SMAN算法在Web数据上能显著提高实体识别和关系抽取的性能,为构建高质量的Web知识图谱提供了有效方法。
This paper proposes a joint entity relation extraction algorithm based on multimodal attention Network(SMAN).The algorithm utilizes cloze mechanism to model text context information and employs Modal Enhanced Attention module(MEA)to capture fine-grained interaction features between cross-modal data.Experiments demonstrate that the SMAN algorithm can significantly enhance the performance of entity recognition and relationship extraction on Web data,offering an effective approach for constructing high-quality Web knowledge graph.
作者
农丹华
NONG Danhua(Guangxi Technological College of Machinery and Electricity,Nanning Guangxi 530007,China)
出处
《信息与电脑》
2024年第10期184-186,共3页
Information & Computer
关键词
深度学习
实体识别
关系抽取
deep learning
entity recognition
relation extraction