期刊文献+

基于粒子流滤波的视觉定位算法

Visual localization algorithm based on particle flow filtering
下载PDF
导出
摘要 针对基于粒子滤波的视觉定位算法存在的粒子需求量大以及重采样中粒子贫化而导致的计算量大、定位精度差等问题,提出了一种采用粒子流滤波进行优化的视觉定位算法。该算法通过一个微分方程进行粒子的移动,利用粒子流完成随机样本集从先验分布到后验分布的更新,进而避免了“粒子退化”现象,最后利用参量近似法来求解粒子流滤波,实验结果证明,该算法减少了算法计算量和运行时间,提高了系统的精度。 To solve the problems of large number of required particles,as well as large computation amount and poor positioning accuracy caused by particle dilution in resampling of visual positioning algorithm based on particle filter,a visual positioning algorithm optimized by particle flow filter is proposed.The algorithm uses a differential equation to move the particles,and the particle flow is used to update the random sample set from a prior distribution to a posterior distribution,thus avoiding the“particle degradation”phenome⁃non.Finally,the parameter approximation method is used to solve the particle flow filter.The experiment results show that this algorithm reduces the computational load and running time of the algorithm,improving the accuracy of the system.
作者 杨琼楠 吴力涛 仇晨光 YANG Qiong-nan;WU Li-tao;QIU Chen-guang(Suzhou R&D Center of the 214th Research Institute of China Ordnance Industry,Suzhou 215136,Jiangsu Province,China)
机构地区 中国兵器工业第
出处 《信息技术》 2024年第8期134-138,共5页 Information Technology
基金 陕西省重点研发计划项目(2022GY-242)。
关键词 粒子流滤波 粒子滤波 视觉里程计 贝叶斯滤波 非线性滤波 particle flow filter particle filter visual odometry bayesian filtering nonlinear filtering
  • 相关文献

参考文献3

二级参考文献35

  • 1班朝,任国营,王斌锐,陈相君.基于IMU的机器人姿态自适应EKF测量算法研究[J].仪器仪表学报,2020,41(2):33-39. 被引量:30
  • 2James C. Bayesian Signals Processing [ M]. Hoboken:John Wiley & Sons Press,2009.3 - 10.
  • 3Simon J,Jeffery U,Hugh D. A new method for the nonlin- ear transformation of means and covariance in filters and estimators [ J ]. IEEE Transactions on Auto Control, 2000, 45(3) :477 -481.
  • 4Arasaratnam I, Haykin S. Cubature Kalman filters [J ]. IEEE Transactions on Auto Control, 2009,56 ( 6 ) : 1254 - 1269.
  • 5Rudolph M. Sigma-Point Kalman Filters for Probabilistic Inference in Dynamic State-Space Models[D ]. Oregon: Oregon Health & Science University ,2004,251 -256.
  • 6Gordon N, Salmond D, Smith A. Novel approach to nonlin- ear/non-Ganssian .Bayesian state estimation [J ]. IEE Radar and Signal Processing, 1993,140 ( 2 ) : 107 - 113.
  • 7Fred D. Nonlinear filters:Beyond Kalman filter [ J ]. IEEE Aerospace & Electronics Systems Magazine, 2005,43 ( 8 ) : 57 - 69.
  • 8Synder C, Bengtsson T, Bickel P, et al. Obstacles to ,high- dimensional particle filtering [ J]. Monthly Weather Re- view,2008,136 ( 1 ) :4629 - 4640.
  • 9Rudolph M. The Unscented Particle Filter [R ].Cambridge: Cambridge University, 2000.
  • 10Daum F. Coulomb's law particle flow for nonlinear filter[ A]. Proceedings of SPIE on Signal Processing and Sensor Fusion[ C ]. USA: SPIE Press,2011. 3351 - 3362.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部