摘要
里德堡激子是由库伦力束缚的高激发态电子—空穴对,具有与里德堡原子类似的物理性质,应用前景广阔。近年来,里德堡激子的研究逐步拓展到二维半导体材料中。重点探讨利用二维半导体中里德堡激子的介电屏蔽敏感特性,通过设计特殊的范德华器件构型,研究临近二维电子体系中的新奇物态和量子相变。此外,利用二维莫尔超晶格中的莫尔势场,可以对里德堡激子进行空间束缚和调控,形成强耦合的里德堡莫尔激子态,其表现为能量劈裂、共振峰显著红移和反射光谱线宽变窄。这些发现为里德堡激子在量子传感、量子非线性光学和量子模拟等领域的应用奠定了基础。
Rydberg excitons,bound by Coulomb forces,are highly excited electron-hole pairs with physical properties similar to Rydberg atoms,offering broad application prospects.In recent years,the research on Rydberg excitons has gradually expanded into twodimensional semiconductors.This paper focuses on utilizing the dielectric screening sensitivity of Rydberg exciton states in two-dimensional semiconductors.By designing special van der Waals device structures,researchers can investigate novel states and quantum phase transitions in adjacent two-dimensional electronic systems.Furthermore,the Moire potential field generated in two-dimensional Moire superlattices allows spatial confinement and manipulation of these Rydberg excitons,forming strongly coupled Rydberg Moire exciton states.Experimentally,these states exhibit energy splitting,significant redshift of resonance peak,and narrowed linewidths in the reflectance spectra.These findings lay a crucial foundation for the application of Rydberg excitons in quantum sensing,quantum nonlinear optics,and quantum simulation.
作者
许杨
XU Yang(Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190;School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049)
出处
《中国基础科学》
2024年第3期51-56,共6页
China Basic Science
基金
国家重点研发计划项目(2021YFA1401300)
国家自然科学基金项目(12174439)。
关键词
里德堡激子
莫尔超晶格
二维半导体
激子传感
Rydberg exciton
Moire superlattice
twodimensional semiconductor
exciton sensing