摘要
西湖凹陷位于东海,钻井取心比较困难,取心资料比较少,岩屑录井资料比较粗略,为了得到比较精细的地层岩性,在无监督机器学习的基础上,采用有监督机器学习的方法进行岩性识别。结果表明:该方法对研究区地层的岩性识别率可达95%以上,能够快速准确地对目的层的岩性进行识别。
The West Lake Depression is located in the East China Sea,where drilling and coring are relatively difficult,with limited coring data and rough cuttings logging data.In order to obtain more precise formation lithology,a supervised machine learning method based on unsupervised machine learning is adopted for lithology identification.The results show that the method has a lithology recognition rate of over 95%for the strata in the study area,and can quickly and accurately identify the lithology of the target layer.
作者
靳九龙
杨斌
唐生寿
刘洪瑞
代兴宇
蒲金成
Jin Jiulong;Yang Bin;Tang Shengshou;Liu Hongrui;Dai Xingyu;Pu Jincheng(Chengdu University of Technology,Chengdu 610059)
出处
《石化技术》
CAS
2024年第8期218-220,共3页
Petrochemical Industry Technology
关键词
西湖凹陷
花港组
岩性识别
多分辨率图形聚类
支持向量机
Xihu Depression
Huagang Group
Lithological identification
MRGC clustering
Support Vector Machine