摘要
该文研究有限区间(0,1)上具有Robin边界条件和不连续点x=d∈(0,12]的Sturm-Liouville算子逆谱问题.假设已知的数据为一组子谱、势函数在(d,1)上的信息以及右边界条件和不连续条件中的部分参数,该文证明恢复(0,d)上的势函数和左边界条件参数的逆谱问题局部可解性和稳定性,其中已知的势函数信息和右边界条件参数允许存在一定的误差.
This paper studies inverse spectral problems for the Sturm-Liouville operator on(0,1)with the Robin boundary conditions and a discontinuity at x=d∈(0,12].Suppose that the known data contains one subspectrum,the potential function on(d,1)as well as partial parameters in the right boundary condition and the discontinuous conditions.The paper proves the local solvability and stability for the inverse problems of recovering the potential function on(0,d)and the parameter in left boundary condition,where the known potential and the parameter in the right boundary condition are allowed to contain errors.
作者
郭燕
徐小川
Guo Yan;Xu Xiaochuan(School of Mathematics and Statistics,Nanjing University of Information Science and Technology,Nanjing 210044;Center for Applied Mathematics of Jiangsu Province,Nanjing University of Information Science and Technology,Nanjing 210044;Jiangsu International Joint Laboratory on System Modeling and Data Analysis,Nanjing University of Information Science and Technology,Nanjing 210044)
出处
《数学物理学报(A辑)》
CSCD
北大核心
2024年第4期859-870,共12页
Acta Mathematica Scientia
基金
国家自然科学基金(11901304)。