摘要
该文考虑一类具有局部长尾分布,但不一定具有相同分布的随机变量序列,其联合分布由Bernstein copula函数进行联系.研究其部分和及其最大值的局部分布的渐近性质.在假设诸随机变量服从局部次指数分布的条件下,得到了Max-Sum局部等价性.该等价性从局部和相依的角度描述了随机游动的一次大跳原理.数值实验表明所得结果稳定可行.
In this paper,we consider a sequence of non-negative dependent and not necessarily identically distributed random variables with local long-tailed marginal distributions and Bernstein copula and study the local asymptotic behavior of the tail of their partial sum and maximum.Then,under a suitable condition for local subexponentiality,we obtain the local max-sum equivalence.The result indicates that the big-jump principle of random walks remains valid in its local version under more general dependency assumptions.The numerical experimental results under different parameter settings further validate the stability and feasibility of the obtained results.
作者
明瑞星
楼振瀚
崔盛
龚婵
Ming Ruixing;Lou Zhenhan;Cui Sheng;Gong Chan(School of Statistics and Mathematics,Zhejiang Gongshang University,Hangzhou 310018;Science College,China Three Gorges University,Hubei Yichang 443002;Three Gorges Mathematical Research Center,China Three Gorges University,Hubei Yichang 443002)
出处
《数学物理学报(A辑)》
CSCD
北大核心
2024年第4期1110-1125,共16页
Acta Mathematica Scientia
基金
浙江省重点建设高校优势特色学科(浙江工商大学统计学)
浙江工商大学“数字+”学科建设管理项目“数据资产:经济理论,价值核算,市场交易与政策创新(SZJ2022B004)”
浙江省统计科学研究基地项目高维情形下最小方差投资组合研究(22TJD02)
宜昌市大学科学研究与应用项目(A21-3-018)。