期刊文献+

基于Bernstein Copula函数的随机变量序列的Max-Sum局部等价式

Local Max-sum Equivalence of Random Variables with Bernstein Copula
下载PDF
导出
摘要 该文考虑一类具有局部长尾分布,但不一定具有相同分布的随机变量序列,其联合分布由Bernstein copula函数进行联系.研究其部分和及其最大值的局部分布的渐近性质.在假设诸随机变量服从局部次指数分布的条件下,得到了Max-Sum局部等价性.该等价性从局部和相依的角度描述了随机游动的一次大跳原理.数值实验表明所得结果稳定可行. In this paper,we consider a sequence of non-negative dependent and not necessarily identically distributed random variables with local long-tailed marginal distributions and Bernstein copula and study the local asymptotic behavior of the tail of their partial sum and maximum.Then,under a suitable condition for local subexponentiality,we obtain the local max-sum equivalence.The result indicates that the big-jump principle of random walks remains valid in its local version under more general dependency assumptions.The numerical experimental results under different parameter settings further validate the stability and feasibility of the obtained results.
作者 明瑞星 楼振瀚 崔盛 龚婵 Ming Ruixing;Lou Zhenhan;Cui Sheng;Gong Chan(School of Statistics and Mathematics,Zhejiang Gongshang University,Hangzhou 310018;Science College,China Three Gorges University,Hubei Yichang 443002;Three Gorges Mathematical Research Center,China Three Gorges University,Hubei Yichang 443002)
出处 《数学物理学报(A辑)》 CSCD 北大核心 2024年第4期1110-1125,共16页 Acta Mathematica Scientia
基金 浙江省重点建设高校优势特色学科(浙江工商大学统计学) 浙江工商大学“数字+”学科建设管理项目“数据资产:经济理论,价值核算,市场交易与政策创新(SZJ2022B004)” 浙江省统计科学研究基地项目高维情形下最小方差投资组合研究(22TJD02) 宜昌市大学科学研究与应用项目(A21-3-018)。
关键词 Bernstein copula Max-Sum局部等价性 局部次指数分布 一次大跳原理 Bernstein copula Local max-sum equivalence Local subexponentiality Principle of a single big jump
  • 相关文献

参考文献5

二级参考文献29

  • 1韦艳华,张世英,郭焱.金融市场相关程度与相关模式的研究[J].系统工程学报,2004,19(4):355-362. 被引量:83
  • 2吴振翔,陈敏,叶五一,缪柏其.基于Copula-GARCH的投资组合风险分析[J].系统工程理论与实践,2006,26(3):45-52. 被引量:85
  • 3李健伦,方兆本.估算我国保监会对产险业的容许破产概率[J].中国管理科学,2006,14(4):6-12. 被引量:3
  • 4Geluk J L, De Vries C G. Weighted sums of subexponential random variables and asymptotic dependence between returns on reinsurance equities. Insurance: Mathematics and Economics, 2006, 38:39- 56.
  • 5Asmussen S, Foss S, Korshunov D. Asymptotics for sums of random variables with local subexponential behaviour. J. Theoret. Prob., 2003, 16: 489-518.
  • 6Chistyakov V P. A theorem on sum of independent positive random variables and its application to branching random processes. Theory Probab. Appl., 1964, 9: 640-648.
  • 7Ng K W, Tang Q. Asymptotic behaviour of tail and local probabilities for sums of subexponential random variables. J. Appl. Prob., 2004, 41: 108-116.
  • 8Wang Y, Yang Y and Wang K. The closure of a local subexponential distribution with applications applications to the compound Poisson process. J. Appl. Prob., 2005, 42: 1194-1203.
  • 9Wang Y, Yang Y, Wang K and Cheng D. Some new equivalent conditions on asymptotics for random sums and their applications. Insurance: Mathematics and Economics, 2007, 40(2): 256- 266.
  • 10Embrechts P and Goldie C. On closure and factorization properties of subexponential and related distributions. J. Austral. Math. Soc., 1980, 29: 243-256.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部