期刊文献+

小样本下基于递归图和迁移学习的轴承故障诊断

Bearing Fault Diagnosis Based on Recursive Graph and Transfer Learning in Small Sample
下载PDF
导出
摘要 针对实际工程中故障振动信号数据分布不同、数据量小的问题,提出一种基于卷积神经网络进行迁移学习的滚动轴承诊断方法。利用递归图对滚动轴承的一维时序数据进行图像转换,得到二维图像下的源域数据和目标域数据;将源域数据输入到添加ECA注意力机制的ResNet网络中进行预训练,得到预训练权重;将预训练权重迁移至模型当中,用少量样本进行训练,以验证集准确率为基准,获取此时的训练权重,并保存至目标模型中,最后将测试集数据输入到此时的模型进行验证。结果表明:所提方法能够在目标域仅有少量训练样本的情况下,达到较高的故障识别准确率,且具有较强的鲁棒性能和泛化性能。 To address the problems of different data distributions and small data size of fault vibration signals in practical engineering,a transfer learning method based on convolutional neural network was proposed for rolling bearing diagnosis.The 1D time series data of rolling bearings were transformed into images by using recursive graphs,and the source domain data and target domain data were obtained in the 2D image domain.Then,the source domain data were input into the ResNet network with ECA attention mechanism for pre-training,and the pre-trained weights were obtained.The pre-trained weights were transferred to the model,and a small number of samples were used for training.The validation accuracy was used as the criterion to obtain the training weights at this time,and they were saved to the target model.Finally,the test set data were input into the model at this time for validation.The results show that the proposed method can achieve high fault identification accuracy in the target domain with only a small number of training samples,and it has strong robustness and generalization performance.
作者 冯国红 王宏恩 刁鹏飞 张润泽 付晟宏 FENG Guohong;WANG Hongen;DIAO Pengfei;ZHANG Runze;FU Shenghong(College of Mechanical and Electrical Engineering,Northeast Forestry University,Harbin Heilongjiang 150040,China)
出处 《机床与液压》 北大核心 2024年第16期240-248,共9页 Machine Tool & Hydraulics
关键词 故障诊断 深度学习 递归图 迁移学习 fault diagnosis deep learning recursive graph transfer learning
  • 相关文献

参考文献11

二级参考文献128

  • 1LiuHongxing,LiJian,ZhaoYing,QuLiangsheng.IMPROVED SINGULAR VALUE DECOMPOSITION TECHNIQUE FOR DETECTING AND EXTRACTING PERIODIC IMPULSE COMPONENT IN A VIBRATION SIGNAL[J].Chinese Journal of Mechanical Engineering,2004,17(3):340-345. 被引量:15
  • 2邓晓刚,田学民.一种基于KPCA的非线性故障诊断方法[J].山东大学学报(工学版),2005,35(3):103-106. 被引量:27
  • 3何平,文习山.变压器绕组变形的频率响应分析法综述[J].高电压技术,2006,32(5):37-41. 被引量:99
  • 4赵学智,陈统坚,叶邦彦.基于奇异值分解的铣削力信号处理与铣床状态信息分离[J].机械工程学报,2007,43(6):169-174. 被引量:35
  • 5PHILLIPS R D, WATSON L T, WYNNE R H, et al. Feature reduction using a singular value decomposition for the iterative guided spectral class rejection hybrid classifier[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2009, 64(1): 107-116.
  • 6AHMED S M, ALZOUBI Q, ABOZAHHAD M. A hybrid ECG compression algorithm based on singular value decomposition and discrete wavelet transform[J]. Journal of Medical Engineering and Technology, 2007, 31(1): 54-61.
  • 7VANLANDUIT S, CAUBERGHE B, GUILLAUME E Reduction of large frequency response function data sets using robust singular value decomposition[J]. Computers and Structures, 2006, 84(12): 808-822.
  • 8VOZALIS M G, MARGARITIS K G. Using SVD and demographic data for the enhancement of generalized collaborative filtering[J]. Information Sciences, 2007, 177(15). 3017-3037.
  • 9WILLIAMS T, AHMADI M, MILLER W C. Design of 2D FIR and IIR digital filters with canonical signed digit coefficients using singular value decomposition and genetic algorithms[J]. Circuits Systems and Signal Processing, 2007, 26(1): 69-89.
  • 10LEHTOLA L, KARSIKAS M, KOSKINEN M, et al. Effects of noise and filtering on SVD-based morphological parameters of the T wave in the ECG[J]. Journal of Medical Engineering & Technology, 2008, 32(5): 400-407.

共引文献202

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部