摘要
阴影法能以较低的成本测量大范围的城市建筑物高度,但其中的阴影长度测量方法在复杂阴影场景中存在测量效率低、精度差、鲁棒性低等问题。对此,该文提出了一种复杂建筑阴影测量方法。该方法首先通过渔网法和多种约束条件相结合实现对阴影的测量与划分;其次,统计所有划分区域的阴影长度值,利用四分位法和双向逼近策略确定阴影最优值;然后,综合评估所有区域最优值确定阴影长度;最后,利用立体交会的建筑高度对应用该阴影测量方法计算的建筑物高度进行验证。结果表明:该方法计算建筑物高度有90.6%以上绝对误差在0~5 m之间。因此可以得出该文方法计算的阴影长度有着较高的精度,能够满足不同种类的复杂阴影测量,提高了阴影法反演建筑物高度的精度,为城市建筑物高度的反演提供新的技术支撑。
Building heights are necessary for urban informatics,providing a significant basis for the planning and early warning of risks for urban construction.The shadow method,which can measure the heights of urban buildings on a large scale at a low cost,faces challenges such as low efficiency,accuracy,and robustness in building height inversion in complex shadow scenes.This study proposed a measurement method for these scenes.First,the shadows were measured and delineated using the fishing net method combined with multiple constraints.Second,the shadow lengths of all the zones divided were obtained,and the optimal values were determined using the quartile method and the bidirectional approximation strategy.Third,the shadow lengths were determined through a comprehensive assessment of the optimal values of all zones.The results show that 90.6%of building heights calculated using the new method exhibited absolute errors ranging from 0 to 5 m.Therefore,this method features elevated accuracy of building height inversion for various complex shadow scenes,laying a basis for research into the inversion and expansion of urban building heights.
作者
李志新
纪松
范大昭
高定
李永建
王刃
LI Zhixin;JI Song;FAN Dazhao;GAO Ding;LI Yongjian;WANG Ren(Institute of Geospatial Information,Information Engineering University,Zhengzhou 450001,China;Shandong Wuzheng Group Co.,Ltd.,Rizhao 276800,China)
出处
《自然资源遥感》
CSCD
北大核心
2024年第3期108-116,共9页
Remote Sensing for Natural Resources
基金
国家自然科学基金项目“高分辨率卫星影像协同处理与定位能力星间传递技术研究”(编号:41971427)
嵩山实验室项目“空间智能融合感知技术及精密重建系统”(编号:221100211000-5)
国防科工局项目“高分遥感测绘应用示范系统(二期)”(编号:42-Y30B04-9001-19/21)共同资助。
关键词
渔网法
分区统计
四分位法剔除粗差
双向逼近策略
最优值评估
fishing net method
zonal statistics
quartile method to eliminate gross error
bidirectional approximation strategy
optimal value evaluation