期刊文献+

加权K-Means与DRSS定位结合的GNSS干扰源定位方法

Localization for GNSS interference sources based on weighted K-Means combined with DRSS positioning
下载PDF
导出
摘要 针对基于载噪比(carrier to noise ratio,CNR)的GNSS干扰源定位,在存在多个干扰源、多径传输且接收机间距较远时定位难度大、精度低的问题,提出了一种加权K均值(K-Means)聚类算法与基于差分接收信号强度(differential received signal strength,DRSS)的方程解算定位相结合的多干扰源定位方法.在假设干扰源个数确定以及单个接收机只受到一个干扰源影响的前提下,设计了改进的加权K-Means聚类算法实现对多个干扰源位置的初步估计.为了进一步降低在观测接收机相距较远时加权K-Means方法的定位误差,在聚类后选取各簇内受干扰影响显著的接收CNR构建基于DRSS的定位方程组,通过方程解算得到更加精细的定位结果.仿真结果表明,所提出的定位方案可以实现对多干扰源的定位,结合DRSS参数定位后,单干扰源场景下定位误差可降低19%以上,存在两个单音干扰源的场景下定位误差可降低38%以上. The carrier to noise ratio(CNR)based interference positioning in Global Navigation Satellite System(GNSS)has the problem of high localization difficulty and the low localization precision under the scenarios with multiple interference sources,multi-path transmission and long distance between receivers.Aiming at this problem,a multi-interference localization scheme that combines the weighted K-Means clustering with different receiver signal strength(DRSS)and equation solving based method is proposed in this paper.Assuming that the number of interference sources is determined and a single receiver is only affected by one interference source,the improved weighted K-Means clustering algorithm is designed to realize the initial estimation for multiple interference sources.In order to reduce the positioning error of the weighted K-Means clustering when the distance between receives is long,the receiving CNR affected more obviously by interference within each cluster are used to build the localization equations based on DRSS after clustering processing.To solve the equations can obtain the more accurate localization results.Simulation results demonstrate that the proposed scheme can realize the multi-interference localization.Compared with the scheme only including weighted K-Means,the average positioning errors of the proposed method involving DRSS parameters can be reduced by more than 19%and 38%under the two cases of single source and two single-tone sources,respectively.
作者 程涵清 张国梅 彭可军 CHENG Hanqing;ZHANG Guomei;PENG Kejun(School of Information and Communications Engineering,Xi’an Jiaotong University,Xi’an 710049,China)
出处 《全球定位系统》 CSCD 2024年第4期113-120,126,共9页 Gnss World of China
基金 国家部委基金资助项目(EEY22684X023) 陕西省自然科学基础研究计划(2023-JC-YB-519)。
关键词 GNSS 干扰源定位 载噪比(CNR) 聚类 差分信号强度 GNSS interference sources localization carrier noise power density rate clustering DRSS
  • 相关文献

参考文献4

二级参考文献18

  • 1陈奇东,陶海红,刘睿,甄卫民.GNSS弱干扰TDOA定位时差估计方法[J].中国电子科学研究院学报,2020,15(2):135-140. 被引量:5
  • 2方震,赵湛,郭鹏,张玉国.基于RSSI测距分析[J].传感技术学报,2007,20(11):2526-2530. 被引量:265
  • 3Sahmoudi M,Amin M G.Robust tracking of weak GPS signals in multipath and jamming environments[J].Signal Processing,2009,89(7):1320-1333.
  • 4Liu L Y,Amin M G.Tracking performance and average error analysis of GPS discriminators in multipath[J].Signal Processing,2009,89(6):1224-1239.
  • 5Groves P D.GPS signal to noise measurement in weak signal and high interference environments[C]//ION GNSS 18th International Technical Meeting of the Satellite Division,2005:643-658.
  • 6Borio D,Presti L L,Mulassano P.Digital spectral separation coefficient (SSC) for GNSS signal to noise measurements and interference detection[C]//ION GNSS 19th International Technical Meeting of the Satellite Division,2006:841-852.
  • 7Sharawi M S,Akos D M,Aloi D N.GPS C/N0 estimation in the presence of interference and limited quantization levels[J].IEEE Transactions on Aerospace and Electronic Systems,2007,43(1):227-238.
  • 8蒋君伟,段晓辉,林阳.GPS信号载噪比估计算法的研究[J].北京大学学报(自然科学版),2009,45(3):409-414. 被引量:8
  • 9何文涛,徐建华,叶甜春.GPS弱信号的自适应载噪比估计算法[J].电子技术应用,2010,36(6):111-114. 被引量:9
  • 10金力,崔晓伟,陆明泉,冯振明.新一代全球导航定位系统(GNSS)信号的载噪比联合估计[J].清华大学学报(自然科学版),2010,50(12):2012-2017. 被引量:3

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部