摘要
受野外采集过程中设备和环境等多种因素影响,地震数据中往往存在表面波、鬼波、随机噪声等各种噪声,影响了地震数据处理和解释的可靠性和准确性。近年来,基于人工智能的方法以其计算效率高、数值效果好等优点成为地震数据去噪的研究热点。U型网络(U-Net)是一种经典的卷积神经网络结构,常用于图像分割任务;注意力机制(Attention Mechanism,AM)是一种能够让模型在学习过程中更加关注特定区域或特征的技术。通过在U-Net网络中添加AM模块,构建了一种具有注意力功能的U型网络(AU-Net),并将其运用到地震数据去噪。为解决去噪过程中产生的边界效应,使用膨胀填充的方法对数据进行切分,该方法通用性较高,可以用于其他网络模型。AU-Net和U-Net的去噪试验结果表明:AU-Net网络去噪的效果比U-Net更好,可更好地保留弱信号;同时,通过迁移学习使AU-Net去噪方法更具适应性。
Due to various factors such as instruments,equipment,and environment during field acquisition,there often exist various types of noise in seismic data,including surface waves,ghost waves,random noise,etc.,affecting the reliability and accuracy of seismic data processing and interpretation.Recently,methods based on artificial intelligence have become a research hotspot in seismic data denoising,as they have high com⁃puting efficiency and good numerical effects.U⁃Net is a classic convolutional neural network structure com⁃monly used in image segmentation tasks.Attention mechanism(AM)is a technique that allows models to fo⁃cus more on specific regions or features during the learning process.This paper constructs a U⁃Net with atten⁃tion function by adding an AM module to the U⁃Net network and applies it to seismic data denoising.To ad⁃dress the boundary effects generated during the denoising process,the expansion filling method is used to seg⁃ment data.This method has strong universality and can be used for other network models.By comparing the de⁃noising effect of AU⁃Net and U⁃Net,it has been proved that AU⁃Net network has better denoising effect than that of the U⁃Net,which can better preserve weak signals.Meanwhile,AU⁃Net denoising method is more adap⁃table by transfer learning.
作者
曹静杰
高康富
许银坡
王乃建
张纯
朱跃飞
CAO Jingjie;GAO Kangfu;XU Yinpo;WANG Naijian;ZHANG Chun;ZHU Yuefei(Key Laboratory of Intelligent Detection and Equipment for Underground Space of Beijing-Tianjin-Hebei Urban Agglomera-tion,Ministry of Natural Resources,Hebei GEO University,Shijiazhuang,Hebei 050031,China;Hebei Key Laboratory of Strategic Critical Mineral Resources,Hebei GEO University,Shijiazhuang,Hebei 050031,China;School of Earth Sciences,Hebei GEO University,Shijiazhuang,Hebei,050031,China;Acquisition Technology Institute,BGP Inc.,CNPC,Zhuozhou,Hebei 072751,China;College of Geoscience and Surveying Engineering,China University of Mining and Technology(Beijing),Beijing 100083,China)
出处
《石油地球物理勘探》
EI
CSCD
北大核心
2024年第4期724-735,共12页
Oil Geophysical Prospecting
基金
国家自然科学基金项目“面向城市地质的三维地震勘探压缩感知采集设计与数据重建研究”(41974166)
河北省自然科学基金项目“基于深度学习和模型驱动的地震数据重建方法研究”(D2021403010)
“黏弹介质逆时偏移成像研究”(D2021403040)
河北省自然资源厅项目“基于光纤传感的地下空间智能监测方法与应用”
河北地质大学科技创新团队项目“地震信号处理与应用团队”(KJCXTD202106)联合资助。