期刊文献+

基于LMD-XGBoost的短时生鲜物流需求预测

Prediction on the Short-Term Fresh Logistics Demand Based on LMD-XGBoost
下载PDF
导出
摘要 随着生鲜物流行业的蓬勃发展,消费者对生鲜物流的要求也在进一步提高,传统需求预测模型已经难以满足市场需求。为解决传统预测方式难以有效应对短期生鲜物流需求的非线性关系和动态变化等问题,文章提出了LMD-XGBoost组合模型预测方法,对输入的物流需求曲线进行LMD分解,然后对分解所得的各分量进行XGBoost预测,最后对预测得出的分量进行逐一求和以得到最终结果。以某连锁超市的生鲜物流需求为例,对其日物流需求进行预测,证明该模型具备有效性和可行性,为解决非线性、强突变性短时物流曲线预测问题提供了方法参考。 With the booming development of the fresh logistics industry,consumers have further increased their requirements for the fresh logistics.Traditional prediction models are no longer able to meet the market demand.In order to address the shortcomings of traditional prediction methods in effectively dealing with the nonlinear relationship and dynamic changes of short-term fresh logistics demand,this paper proposes the LMD-XGBoost combination model prediction method.By decomposing the input logistics demand curve into LMD,the XGBoost prediction is performed on each component obtained from the decomposition,and finally,the predicted components are summed up one by one to obtain the final result.Taking the fresh logistics demand of a certain chain supermarket as an example,its daily logistics demand is predicted,and the results show that the model is effective and feasible,and can provide a method reference for solving the problem of non-linear and strongly sudden short-term logistics curve prediction.
作者 薛皓予 张志清 XUE Haoyu;ZHANG Zhiqing(School of Management,Wuhan University of Science and Technology,Wuhan 430070,China)
出处 《物流科技》 2024年第16期18-23,共6页 Logistics Sci-Tech
基金 武汉科技大学“十四五”湖北省优势特色学科(群)项目“数字化转型背景下数据驱动的敏捷协同创新理论与方法研究”(2023D0402)。
关键词 生鲜物流 物流需求预测 信号分解 机器学习 fresh logistics logistics demand prediction signal decomposition machine learning
  • 相关文献

参考文献3

二级参考文献29

  • 1黄文聪,张宇,张隽怡,谢博,常雨芳.基于时间序列突变误差校正的超短期风速联合预测模型[J].昆明理工大学学报(自然科学版),2020(4):73-84. 被引量:4
  • 2后锐,张毕西.基于MLP神经网络的区域物流需求预测方法及其应用[J].系统工程理论与实践,2005,25(12):43-47. 被引量:87
  • 3Fite J, Taylor G. Forecasting freight demand using economic indices [ J ]. International Journal of Physical Distribution and Logistics Management,2001,31 (4) :299.
  • 4Lau H C W. A demand forecast model using a combination of smTogate data analysis and optimal neural network ap- proach[J ]. Decision Support Systems, 2013,54 ( 3 ) : 1404- 1416.
  • 5Hong W C. Potential assessment of the support vector regres- sion technique in rainfall forecasting [ J ]. Water Resource Manage ,2007,21 ( 2 ) :495-513.
  • 6Shuhaida Ismail. A hybrid model of self-organizing maps (SOM) and least square support vector machine for time-se- ries forecast[ J ]. Expert Systems with Appications, 2011 , 38 (8) : 10574-10578.
  • 7Wen Fenghua, Xiao Jihong, He Zhifang, et al. Stock price prediction based on SSA and SVM [ J]. Procedia Computer Science,2014,31:625-631.
  • 8He Beulan, Shi Yong, Wan Qian, et al. Prediction of cus- tomer attrition of commercial banks based on SVM model [ J]. Procedia Computer Science,2014,31:423-430.
  • 9呼文亮,王惠文.基于贝叶斯准则的支持向量机预测模型[J].北京航空航天大学学报,2010,36(4):486-489. 被引量:11
  • 10丁世飞,齐丙娟,谭红艳.支持向量机理论与算法研究综述[J].电子科技大学学报,2011,40(1):2-10. 被引量:912

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部