期刊文献+

Multivariate Time Series Anomaly Detection Based on Spatial-Temporal Network and Transformer in Industrial Internet of Things

下载PDF
导出
摘要 In the Industrial Internet of Things(IIoT),sensors generate time series data to reflect the working state.When the systems are attacked,timely identification of outliers in time series is critical to ensure security.Although many anomaly detection methods have been proposed,the temporal correlation of the time series over the same sensor and the state(spatial)correlation between different sensors are rarely considered simultaneously in these methods.Owing to the superior capability of Transformer in learning time series features.This paper proposes a time series anomaly detection method based on a spatial-temporal network and an improved Transformer.Additionally,the methods based on graph neural networks typically include a graph structure learning module and an anomaly detection module,which are interdependent.However,in the initial phase of training,since neither of the modules has reached an optimal state,their performance may influence each other.This scenario makes the end-to-end training approach hard to effectively direct the learning trajectory of each module.This interdependence between the modules,coupled with the initial instability,may cause the model to find it hard to find the optimal solution during the training process,resulting in unsatisfactory results.We introduce an adaptive graph structure learning method to obtain the optimal model parameters and graph structure.Experiments on two publicly available datasets demonstrate that the proposed method attains higher anomaly detection results than other methods.
出处 《Computers, Materials & Continua》 SCIE EI 2024年第8期2815-2837,共23页 计算机、材料和连续体(英文)
基金 This work is partly supported by the National Key Research and Development Program of China(Grant No.2020YFB1805403) the National Natural Science Foundation of China(Grant No.62032002) the 111 Project(Grant No.B21049).
  • 相关文献

参考文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部