期刊文献+

基于改进电阻抗技术的酵母菌细胞活性检测

Yeast cell activity detection based on improved electrical impedance technology
下载PDF
导出
摘要 目的为了使用神经网络快速预测并探究酵母菌细胞活性与电阻抗之间的关系。方法选用电阻抗技术对不同浓度活性酵母菌细胞进行测试,获得死亡细胞的阻抗值。基于灰狼算法优化的BP神经网络的预测模型,探究酵母菌活性与电阻抗在不同频率下的关系。结果酵母菌活性与电阻抗存在复杂的非线性关系,在一定频率下随着酵母菌细胞浓度的增加,酵母菌细胞悬浮液的电阻抗也随之增加。发现活性细胞在相对频率下的电阻抗要高于死亡细胞。基于灰狼算法优化的BP神经网络预测模型误差明显小于BP神经网络,且拟合值更加接近真实值。结论该文所提方法能有效解决电阻抗与酵母菌活性的非线性关系,能够为电阻抗技术在细胞检测领域的应用提供参考。 【Objective】To rapidly predict and explore the relationship between yeast cell activity and impedance using neural networks.【Methods】The impedance values of dead yeast cells were obtained by testing yeast cells with different concentrations using impedance technology.A prediction model based on BP neural networks optimized by grey wolf algorithm was employed to explore the relationship between yeast cell activity and impedance at different frequencies.【Results】There existed a complex non-linear relationship between yeast cell activity and impedance,where the impedance of yeast cell suspension increased with the increase of yeast cell concentration at certain frequencies.It was observed that the impedance of active cells was higher than that of dead cells at relative frequencies.The error of the BP neural network prediction model optimized by the grey wolf algorithm was significantly smaller than that of the BP neural network,and the fitted values were closer to the actual values.【Conclusions】The methods proposed in this study effectively address the non-linear relationship between impedance and yeast cell activity,providing valuable insights for the application of impedance technology in the field of cell detection.
作者 王震宇 丁力 叶霞 姚佳烽 WANG Zhenyu;DING Li;YE Xia;YAO Jiafeng(College of Mechanical Engineering,Jiangsu University of Technology,Changzhou,Jiangsu 213001,China;College of Mechanical and Electrical Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing,Jiangsu 210016,China)
出处 《中国医学工程》 2024年第8期22-27,共6页 China Medical Engineering
关键词 酵母菌 细胞检测 电化学阻抗谱 BP神经网络 灰狼优化算法 yeast cell detection electrochemical impedance spectroscopy BP neural network grey wolf optimization algorithm
  • 相关文献

参考文献9

二级参考文献61

  • 1叶明,李晓丞,刘凯,韩伟,姚佳烽.一种基于U2-Net模型的电阻抗成像方法[J].仪器仪表学报,2021,42(2):235-243. 被引量:20
  • 2王松,刘凯,朱天明,李芳,姚佳烽.面向生物阻抗测量的双通道反馈电流源设计[J].仪器仪表学报,2020,41(10):204-212. 被引量:2
  • 3吴阳,刘凯,陈柏,李芳,姚佳烽.自适应粒子群优化算法优化径向基函数神经网络用于电阻抗成像图像重建[J].仪器仪表学报,2020(6):240-249. 被引量:41
  • 4王嘉宁,郭宁.细胞凋亡的检测技术与方法[J].中国药理学与毒理学杂志,2005,19(6):466-470. 被引量:37
  • 5RYO M, MAEDA K, ONDA T, et al. A new simple method for the measurement of visceral fat accumulation by bioelectrical impedance [J]. Diabetes Care, 2005, 28 (2) : 451 - 453.
  • 6SHIGA T, OSHIMA Y, KANAI-H, et al. A simple measurement method of visceral fat accumulation by bio- electrical impedance Analysis [C]// ICEBI, 2007. Aus- tria: Springer Berlin Heidelberg, 2007: 687- 690.
  • 7KATASHIMA M, Development of visceral-fat measur- ing apparatus using abdominal bioelectrical impedance: Validity of measuring principles[J]. Kenko Igaku, 2004, 119(3): 391-396.
  • 8YONEDA M, TASAKI H, TSUCHIYA N, et al. AStudy of Bioelectrical Impedance Analysis methods t'or practical visceral fat estimation [C] // Proceedings ofIEEE International Conference on Granular Computing. California: Is. n. ], 2007:622 - 627.
  • 9ANDERSON D R, BURNHAM K P. Understanding In- formation Criteria for Selection among Capture-Recapture or Ring Recovery Models [M]. Bird Study, London.. Taylor & Francis Group, 1999: S514- S521.
  • 10AKAIKE H. A new look at the statistical model identi- fication [J]. IEEE Transitions on Automatic Control, 1974, 19(6): 716-723.

共引文献237

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部