期刊文献+

相关性约束-预估计压缩感知水声信道估计

Correlation Constraint-Pre-estimate Compressed Sensing Underwater Acoustic Channel Estimation
下载PDF
导出
摘要 针对传统稀疏自适应匹配追踪算法在水声信道估计中估计精度较低且鲁棒性差的问题,提出一种相关性约束-预估计压缩感知信道估计方法。在原子选择阶段利用相关性约束和预估计对稀疏自适应匹配追踪算法进行优化,避免选入相关干扰原子和错位原子,减少算法在迭代过程中的误差累积。在正交频分复用通信体制下,结合实测深海和浅海信道进行仿真分析,结果表明,相对于正交匹配追踪算法,本文改进的算法在深海实测信道和浅海实测信道中通信误码率性能分别提升4 dB和2 dB。 In response to the problem of low estimation accuracy and poor robustness of traditional sparse adaptive matching and tracking algorithms in underwater acoustic channel estimation,a correlation constrained pre-estimation compressed sensing channel estimation method is proposed.In the atomic selection stage,correlation constraints and pre-estimation are used to optimize the sparse adaptive matching and tracking algorithm,avoiding the selection of correlated interference atoms and misplaced atoms,and reducing the accumulation of errors in the iterative process of the algorithm.In the orthogonal frequency division multiplexing communication system,the simulation analysis is carried out in combination with the measured deep-sea and shallow water channels.The results show that compared with the orthogonal matching pursuit algorithm,the communication bit error rate performance of the improved algorithm in this paper is increased by 4 dB and 2 dB respectively in the deep-sea and shallow water measured channels.
作者 方坤升 李德瑞 李宇 FANG Kunsheng;LI Derui;LI Yu(Institute of Acoustics,Chinese Academy of Sciences,Beijing,100190,China;Key Laboratory of Science and Technology on Advanced Underwater Acoustic Signal Processing,Chinese Academy of Sciences,Beijing,100190,China;University of Chinese Academy of Sciences,Beijing,100049,China)
出处 《网络新媒体技术》 2024年第4期35-42,共8页 Network New Media Technology
基金 国家自然科学基金项目(编号:62201565)。
关键词 水声通信 信道估计 鲁棒性 压缩感知 正交频分复用 underwater acoustic communication channel estimation robustness compressed sensing orthogonal frequency division multiplexing
  • 相关文献

参考文献3

二级参考文献11

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部