期刊文献+

基于航迹预测的无人机短时航迹偏离检测方法

Short-time trajectory deviation detection method for UAV based on trajectory prediction
下载PDF
导出
摘要 保障无人机(unmanned aerial vehicle,UAV)飞行安全已经成为推动无人驾驶航空创新应用与规模发展的关键问题。针对UAV在低空结构化航路网络运行过程中由航迹偏离导致的安全隐患,提出一种异常航迹检测方法(abnormal trajectory detection method,ATDM)。首先,建立航迹数据预处理和重构模型,构筑包含位置、速度、航向等多维属性的航迹数据。其次,以具有多维属性的航迹数据为输入,采用双向长短时记忆网络算法构建UAV短期航迹预测模型。最后,基于历史航迹点和预测航迹点间的多维度局部异常因子,将航迹偏离检测转化为航迹点密度分类问题,建立UAV航迹偏离检测方法,实现短时范围内航迹偏离状态的动态监测。结果表明,ATDM在短的预测时间范围内具有较好的精度优势和实时性。 Safeguarding unmanned aerial vehicle(UAV)flight safety has become a key issue in promoting the innovative application and scale development of unmanned aviation.To solve the safety hazards caused by trajectory deviation during the operation of UAV in low-altitude structured airway networks,a abnormal trajectory detection method(ATDM)is proposed.Firstly,a trajectory data preprocessing and reconstruction model is established to construct the trajectory data containing multidimensional attributes such as position,velocity,heading and so on.Secondly,the UAV short-term trajectory prediction model is constructed by using the trajectory data with multi-dimensional attributes as input,and the bidirectional long and short-term memory network algorithm is used.Finally,based on the multidimensional local anomaly factor between historical and prediction trajectory points,the trajectory deviation detection is transformed into a density classification problem of the trajectory points,and the UAV trajectory deviation detection method is established to realize the dynamic monitoring of the trajectory deviation status in the short-time range.Results show that ATDM has better accuracy advantage and real-time performance in short prediction time range.
作者 钟罡 周蒋颖 杜森 张洪海 刘皞 ZHONG Gang;ZHOU Jiangying;DU Sen;ZHANG Honghai;LIU Hao(College of Civil Aviation,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2024年第8期2696-2708,共13页 Systems Engineering and Electronics
基金 中央高校基本科研业务费基金(NS2023037) 国家自然科学基金(71971114,52002177) 南京航空航天大学校级创新实践项目(xcxjh20230745)基金资助课题。
关键词 航迹异常检测 航迹预测 航迹偏离 无人机 trajectory anomaly detection trajectory prediction trajectory deviation unmanned aerial vehicle(UAV)
  • 相关文献

参考文献5

二级参考文献35

  • 1Knorr EM, Ng RT, Tucakov V. Distance-Based outliers: Algorithms and applications. VLDB Journal, 2000,8(3):237-253.
  • 2Ramaswamy S, Rastogi R, Shim K. Efficient algorithms for mining outliers from large data sets. In: Chen WD, Jeffrey FN, Philip AB, eds. Proc. of the SIGMOD 2000. New York: ACM, 2000. 427-438.
  • 3Breunig MM, Kriegel HP, Ng RT, Sander J. LOF: Identifying density-based local outliers. In: Chen WD, Jeffrey FN, Philip AB, eds. Proc. of the SIGMOD 2000. New York: ACM, 2000.93-104.
  • 4Papadimitriou S, Kitagawa H, Gibbons PB, Faloutsos C. LOCI: Fast outlier detection using the local correlation integral. In: Dayal U, Ramamritham K, Vijayaraman TM, eds. Proc. of the ICDE 2003. New York: IEEE Computer Society, 2003.315-326.
  • 5Aggarwal CC, Yu PS. Outlier detection for high dimensional data. In: Aref WG, ed. Proc. of the SIGMOD 2001. New York: ACM, 2001.37-46.
  • 6Lee J, Han J, Li X. Trajectory outlier detection: A partition-and-detect framework. In: Proe. of the ICDE 2008. New York: IEEE Computer Society, 2008. 140-149.
  • 7Chen J, Maylor K. Leung, Gao Y. Noisy logo recognition using line segment hausdorff distance. Pattern Recognition, 2003,36(4): 943-955.
  • 8Huttenlocher DP, Klanderman GA, Rucklidge WA. Comparing images using the hausdorff distance. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1993,15(9):850-863.
  • 9Huttenlocher DP, Kcdem K, Sharir M. The upper envelope of voronoi surfaces and its applications. Discrete and Computational Geometry, 1993,9(1):267-291,.
  • 10Beckmann N, Kriegel HP, Schneider R, Seeger B. The R*-tree: An efficient and robust access method for points and rectangles. In: Hector GM, ed. Proc. of the SIGMOD'90. New York: ACM, 1990. 322-331.

共引文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部